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ABSTRACT

The complexity needed to factor large semiprime numbers is in the heart of public key cryptography. It is very
important to identify cases where semiprime factorization can be done efficiently. This article introduce
mathematical method for semiprime factorization. Hopefully it will help researchers to close further gaps and make

public key cryptography safer [1,2].
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Multiplying both sides by g we get the following cubic equation
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Let Ay be the discriminant of eguation [I.l). then A = 482 = 2Tn? M.

We assume that equation (1.1) has only one real solution, therefore
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Now we define a function gy such that Assuming that us(x) > 0, the following inequalities are equivalent
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Consider the following system of equations:
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tuting x, in the first equation (system 1.7) with the left side of the second
equation (system 1.7) we get implies the monotonic decreasing of f,.
N To find all = that satisfy inequality (2.1) we refer to the following two
M M .
?n(q..(y) - —) -n -Po(q'..(y) - —) =y (LB rases
galy) guly) N
a. nz1and t](z) >z
Equation (1.8) has only one variable y, by solving this equation for y b. nz1and2(z) <

we can easily recover . Thus the problem of factoring semiprime M is
Y 7 F & B Case {a]: Aﬁsumiug that x > 0, we get
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Since fa(da) = 0, one of the zeros of f, must be d,.. By finding 8. and
Plugging it into gq (see (1.6)) we can recover g and thus factor M. Case (b): Assuming that = > 0 and w,(x) > /1458, (x), then
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We want to choose nin such a way that fu would be monotonic in some
interval that contains d,.. This way &, would be the only solution of < 0.

falx) = 0. From (1.5) we get
In both eases inequality (2.1) is satisfied. However, in both of these cases

gulz) =- (Mﬁ:ﬂ_‘l + ‘.%%l) we assumed that = > 0 and ua(r) is real. In the second case we also
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Since uy(z) is real, it must be nonnegtive, therefore inequality (2.3) must
be satisfied. The equivalence of inequalities (2.3) and (2.2) implies that
inequality (2.2) is also satisfied. So inequality (2.1) must hold true for any

3 . . . N
re |1,3-§ l’#) , therefore [, is monotonically decreasing in

We also know that §. = ¢° = np 80 the larger n > 1 grows the smaller 8,
gets. We only need to find 6, in the interval I,,. Notice that the larger n
grows the larger I, expands and, as mentioned, 4, is getting smaller. So
we can start from n = | and increase n as needed until 4, is to be found
in fn.

Notice that the upper bound of [, is coincide with the upper bound of 4,

that appeared in inequality (1.4).

3 Factoring Algorithm

Suppose we have chosen n and suppose that §, € I, = [l. \/27 (#] ]

then fu is monotonically decreasing in fu, s0 we can find 4, = g = np by
running the following procedure.

1. Leta=1

2. Let b= {f27 (2})"

3. Let f=]a,b
4. Let p= |22

5. IF fa(p) is zero, then return gy (g} (the algorithm stops)
6. If p is equal to a, then return g, (b) (the distance between o and b
is one, and from (5) we koow that §, is not a)
T. Il falpe) =0, then b= p
Else o =
£ Return to step (3)
In general we may start from n = 1 and increase i by one if needed. In

this case our algorithm (written in CLRS pseudocode) would look like

this:
SPF{M)

1 n+0N

2 while TRUE

3 do
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B while a4 1 < b

a do

10 if fulc)=10
11 then return g, ()
12 if fulc) =0
13 then b+ ¢
14 else a o
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If n happened to be small then this semiprime factor algorithm
may return answer very fast. Each increase of n by one increase
the running time by

{ 2
al _ f nM
le 1”'21 ( 3 )

We may improve this algorithm by starting from positive integer
that is greater than one. Simply start the algorithm with the first
positive integer n such that An < 0. The running time of this
algorithm may vary according to the semiprime number that
needs to be factor. In particular the gap between the prime
factors should be chosen in such a way that n (in our algorithm)
is significantly large. I hope that this will help researchers to
make public key cryptography more robust and secure [3-5].
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