About Efficient Algorithm for Factoring Semiprime Number

Yonatan Zilpa

Department of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel

Abstract

The complexity needed to factor large semiprime numbers is in the heart of public key cryptography. It is very important to identify cases where semiprime factorization can be done efficiently. This article introduce mathematical method for semiprime factorization. Hopefully it will help researchers to close further gaps and make public key cryptography safer [1,2].

INTRODUCTION

Let M be any semi-prime number and let $1<p<q$ be any positive integers such that $p q=M$. For any nonzero integer n we define

$$
\delta_{n}=q^{2}-n p
$$

Then

$$
q^{2}-n \frac{M}{q}=\delta_{n}
$$

Multiplying both sides by q we get the following cubic equation

$$
\begin{equation*}
q^{3}-\delta_{n} q-n M=0 \tag{1.1}
\end{equation*}
$$

Solving (1.1) for q we get the following vector of solutions

Let Δ_{n} be the discriminant of equation (1.1), then $\Delta_{n}=4 \delta_{n}^{3}-27 n^{2} M^{2}$. We assume that equation (1.1) has only one real solution, therefore

$$
\Delta_{n}<0
$$

Correspondence to: Yonatan Zilpa, Department of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel, Tel: 0587112358; E-mail: yz11235@gmail.com

Received: January 24, 2021; Accepted: August 27, 2021; Published: September 08, 2021
Citation: Zilpa Y (2021) About Efficient Algorithm for Factoring Semiprime Number. J Theor Comput Sci Open Access 7: p053
Copyright: © Zilpa Y. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
or equivalently

$$
\begin{equation*}
\delta_{n}<\sqrt[3]{\frac{27}{4}(n M)^{2}} \tag{1.4}
\end{equation*}
$$

Denote $\left.q_{n}(x)=B_{n}[0]\right]$, then we get a function q_{n} of x defined by

$$
\begin{equation*}
q_{n}(x)=-\left(\frac{\sqrt[3]{2} x}{t_{n}(x)}+\frac{t_{n}(x)}{\sqrt[3]{54}}\right) \tag{1.5}
\end{equation*}
$$

and since q is the solution of $x^{3}-\delta_{n} x-n M=0$, we get

$$
\begin{equation*}
q_{n}\left(\delta_{n}\right)=q . \tag{1.6}
\end{equation*}
$$

Now let

$$
q-p=\delta_{0}
$$

then

$$
\begin{aligned}
& q-\frac{M}{q}=\delta_{0} \\
& q^{2}-\delta_{0} q-M=0 .
\end{aligned}
$$

We thus get

$$
q=\frac{\sqrt{\delta_{0}^{2}+4 M}+\delta_{0}}{2}
$$

Now we define a function q_{0} such that

$$
q_{0}(x)=\frac{\sqrt{x^{2}+4 M}+x}{2}
$$

similarly we define a function p_{0} such that

$$
p_{0}(x)=\frac{\sqrt{x^{2}+4 M}-x}{2}
$$

Consider the following system of equations:

$$
\left\{\begin{array}{l}
\left(q_{0}(x)\right)^{2}-n \cdot p_{0}(x)=y \tag{1.7}\\
q_{n}(y)-\frac{M}{q_{n}(y)}=x .
\end{array}\right.
$$

Clearly $(x, y)=\left(\delta_{0}, \delta_{n}\right)$ is a solution for system (1.7). In addition, substituting x, in the first equation (system 1.7) with the left side of the second equation (system 1.7) we get

$$
\begin{equation*}
\left(q_{0}\left(q_{n}(y)-\frac{M}{q_{n}(y)}\right)\right)^{2}-n \cdot p_{0}\left(q_{n}(y)-\frac{M}{q_{n}(y)}\right)=y \tag{1.8}
\end{equation*}
$$

Equation (1.8) has only one variable y, by solving this equation for y we can easily recover q. Thus the problem of factoring semiprime M is equivalent for finding the zero(s) of the function

$$
\begin{equation*}
f_{n}(x)=\left(q_{0}\left(q_{n}(x)-\frac{M}{q_{n}(x)}\right)\right)^{2}-n \cdot p_{0}\left(q_{n}(x)-\frac{M}{q_{n}(x)}\right)-x \tag{1.9}
\end{equation*}
$$

Since $f_{n}\left(\delta_{n}\right)=0$, one of the zeros of f_{n} must be δ_{n}. By finding δ_{n} and Plugging it into q_{n} (see (1.6)) we can recover q and thus factor M.

2 Choosing n

We want to choose n in such a way that f_{n} would be monotonic in some interval that contains δ_{n}. This way δ_{n} would be the only solution of $f_{n}(x)=0$. From (1.5) we get

$$
\begin{aligned}
q_{n}^{\prime}(x) & =-\left(\frac{\sqrt[3]{2} t_{n}(x)-\sqrt[3]{2} x t_{n}^{\prime}(x)}{t_{n}^{2}(x)}+\frac{t_{n}^{\prime}(x)}{\sqrt[3]{54}}\right) \\
& =\frac{-\sqrt[3]{2} t_{n}(x)+\sqrt[3]{2} x t_{n}^{\prime}(x)}{t_{n}^{2}(x)}-\frac{t_{n}^{\prime}(x)}{\sqrt[3]{54}}
\end{aligned}
$$

and from (1.2) we get

$$
\begin{aligned}
t_{n}^{\prime}(x) & =\frac{1}{3}\left(\sqrt{729 n^{2} M-108 x^{3}}-27 n M\right)^{-2 / 3} \cdot \frac{1}{2}\left(729 n^{2} M-108 x^{3}\right)^{-1 / 2} \cdot(-3 \times 108) x^{2} \\
& =\frac{-54 x^{2}}{t_{n}^{2}(x) u_{n}(x)} .
\end{aligned}
$$

thus $q_{n}^{\prime}(x)=\frac{54 x^{2}}{\sqrt[3]{54} t_{n}^{2}(x) u_{n}(x)}-\frac{\sqrt[3]{2} x^{3}}{u_{n}(x) t_{n}^{4}(x)}-\frac{\sqrt[3]{2}}{t_{n}(x)}$

$$
=\frac{(54)^{2 / 3} x^{2}}{t_{n}^{2}(x) u_{n}(x)}-\frac{\sqrt[3]{x^{3}}}{u_{n}(x) t_{n}^{4}(x)}-\frac{\sqrt[3]{2}}{t_{n}(x)}
$$

n addition

$$
\begin{aligned}
f_{n}^{\prime}(x)= & 2 q_{0}\left(q_{n}(x)-\frac{M}{q_{n}(x)}\right) q_{0}^{\prime}\left(q_{n}(x)-\frac{M}{q_{n}(x)}\right) \cdot\left(q_{n}^{\prime}(x)+\frac{M q_{n}^{\prime}(x)}{q_{n}^{2}(x)}\right) \\
& -n p_{0}^{\prime}\left(q_{n}(x)-\frac{M}{q_{n}(x)}\right) \cdot\left(q_{n}^{\prime}(x)+\frac{M q_{n}^{\prime}(x)}{q_{n}^{2}(x)}\right)-1 \\
= & q_{n}^{\prime}(x)\left(1+\frac{M}{q_{n}^{2}(x)}\right)\left(2 q_{0}\left(q_{n}(x)-\frac{M}{q_{n}(x)}\right) q_{0}^{\prime}\left(q_{n}(x)-\frac{M}{q_{n}(x)}\right)-\right.
\end{aligned}
$$

$$
\left.n p_{0}^{\prime}\left(q_{n}(x)-\frac{M}{q_{\mathrm{n}}(x)}\right)\right)-1
$$

Trom this we can easily see that $q^{\prime}(x)<0$ implies the monotonic decreasng of f_{n}.

Assuming that $u_{n}(x)>0$, the following inequalities are equivalent

$$
\begin{gathered}
q_{n}^{\prime}(x)<0 \\
\frac{54 x^{2}}{3 \cdot \sqrt[3]{2} t_{n}^{2} u_{n}(x)}-\frac{\sqrt[3]{2}}{t_{n}(x)}-\frac{\sqrt[3]{2} \cdot 54 x^{3}}{t_{n}^{2}(x) u_{n}(x)}<0 \\
\frac{3^{2} \cdot \sqrt[3]{4} x^{2}}{t_{n}^{2}(x) u_{n}(x)}-\frac{\sqrt[3]{2}}{t_{n}(x)}-\frac{\sqrt[3]{2} \cdot 54 x^{3}}{t_{n}^{4}(x) u_{n}(x)}<0 \\
3^{2} \cdot \sqrt[3]{4} x^{2} t_{n}^{2}(x)-\sqrt[3]{2} t_{n}^{3}(x) u_{n}(x)-\sqrt[3]{2} \cdot 3^{3} \cdot 2 x^{3}<0 \\
(\sqrt[3]{1458}) x^{2} t_{n}^{2}(x)-t_{n}^{3}(x) u_{n}(x)-54 x^{3}<0
\end{gathered}
$$

Thus, inequality

$$
\begin{equation*}
(\sqrt[3]{1458}) x^{2} t_{n}^{2}(x)-t_{n}^{3}(x) u_{n}(x)-54 x^{3}<0 \tag{2.1}
\end{equation*}
$$

implies the monotonic decreasing of f_{n}.
To find all x that satisfy inequality (2.1) we refer to the following two cases
a. $\quad n \geq 1$ and $t_{n}^{2}(x)>x$
b. $n \geq 1$ and $t_{n}^{2}(x) \leq x$

Case (a): Assuming that $x>0$, we get

$$
\begin{aligned}
(\sqrt[3]{1458}) x^{2} t_{n}^{2}(x)-t_{n}^{3}(x) u_{n}(x)-54 x^{3} & <\sqrt[3]{1458} x^{3}-t_{n}^{3}(x) u_{n}(x)-54 x^{3} \\
& <0
\end{aligned}
$$

Case (b): Assuming that $x>0$ and $u_{n}(x) \geq \sqrt[3]{1458} t_{n}(x)$, then

$$
\begin{aligned}
\sqrt[3]{1458} x^{2} t_{n}^{2}(x)-t_{n}^{3}(x) u_{n}(x)-54 x^{3} & <\sqrt[3]{1458} x^{2} t_{n}^{2}(x)-x^{2} t_{n}(x) u_{n}(x)-54 x^{3} \\
& <\sqrt[3]{1458} x^{2} t_{n}^{2}(x)-x^{2} t_{n}^{2}(x) \sqrt[3]{1458}-54 x \\
& <0
\end{aligned}
$$

In both cases inequality (2.1) is satisfied. However, in both of these cases we assumed that $x>0$ and $u_{n}(x)$ is real. In the second case we also assumed that

$$
u_{n}(x) \geq \sqrt[3]{1458} t_{n}(x)
$$

Now $u_{n}(x)$ is real if

$$
729 n^{2} M^{2}-108 x^{3} \geq 0
$$

and this equivalent to

$$
x \leq \frac{3 \cdot \sqrt[3]{n^{2} M^{2}}}{\sqrt[3]{4}}
$$

Cubing both sides of inequality (2.2) we get

$$
\begin{gather*}
u_{n}^{3}(x) \geq 1458\left(u_{n}(x)-27 n M\right) \\
u_{n}^{3}(x)-1458 u_{n}(x) \geq-(27 \cdot 1458) n M \\
u_{n}(x)\left(u_{n}^{2}(x)-1458\right) \geq-39366 n M \tag{2.3}
\end{gather*}
$$

Since $u_{n}(x)$ is real, it must be nonnegtive, therefore inequality (2.3) must be satisfied. The equivalence of inequalities (2.3) and (2.2) implies that inequality (2.2) is also satisfied. So inequality (2.1) must hold true for any $x \in\left[1,3 \cdot \sqrt[3]{\left(\frac{n M}{2}\right)^{2}}\right]$, therefore f_{n} is monotonically decreasing in

$$
I_{n}=\left[1, \sqrt[3]{27\left(\frac{n m}{2}\right)^{2}}\right]
$$

We also know that $\delta_{n}=q^{2}-n p$ so the larger $n \geq 1$ grows the smaller δ_{n} gets. We only need to find δ_{n} in the interval I_{n}. Notice that the larger n grows the larger I_{n} expands and, as mentioned, δ_{n} is getting smaller. So we can start from $n=1$ and increase n as needed until δ_{n} is to be found in I_{n}.
Notice that the upper bound of I_{n} is coincide with the upper bound of δ_{n} that appeared in inequality (1.4).

3 Factoring Algorithm

Suppose we have chosen n and suppose that $\delta_{n} \in I_{n}=\left[1, \sqrt[3]{27\left(\frac{n M}{2}\right)^{2}}\right]$, then f_{n} is monotonically decreasing in I_{n}, so we can find $\delta_{n}=q^{2}-n p$ by running the following procedure.

1. Let $a=1$
2. Let $b=\sqrt[3]{27\left(\frac{n M}{2}\right)^{2}}$
3. Let $I=[a, b]$
4. Let $\mu=\left\lfloor\frac{a+b}{2}\right\rfloor$.
5. If $f_{n}(\mu)$ is zero, then return $q_{n}(\mu)$ (the algorithm stops)
6. If μ is equal to a, then return $q_{n}(b)$ (the distance between a and b is one, and from (5) we know that δ_{n} is not a)
7. If $f_{n}(\mu)>0$, then $b=\mu$ Else $a=\mu$
8. Return to step (3)

In general we may start from $n=1$ and increase n by one if needed. In this case our algorithm (written in CLRS pseudocode) would look like this:
$\operatorname{SPF}(M)$
$n \leftarrow 0$
while true
do
$n \leftarrow n+1$
$b \leftarrow \sqrt[3]{27\left(\frac{n M}{2}\right)^{2}}$
$a \leftarrow 1$
$c \leftarrow\left\lfloor\frac{a+b}{2}\right\rfloor$
while $a+1<b$
do
if $f_{n}(c)=0$
then return $q_{n}(c)$
if $f_{n}(c)>0$
then $b \leftarrow c$
else $a \leftarrow c$

If n happened to be small then this semiprime factor algorithm may return answer very fast. Each increase of n by one increase the running time by

$$
\lg \left(\sqrt[3]{27\left(\frac{n M}{2}\right)^{2}}\right)
$$

We may improve this algorithm by starting from positive integer that is greater than one. Simply start the algorithm with the first positive integer n such that $\Delta \mathrm{n}<0$. The running time of this algorithm may vary according to the semiprime number that needs to be factor. In particular the gap between the prime factors should be chosen in such a way that n (in our algorithm) is significantly large. I hope that this will help researchers to make public key cryptography more robust and secure [3-5].

REFERENCES

1. Xingbo WA. Strategy for algorithm design in factoring RSA numbers. IOSR Journal of Computer Engineering (IOSR-JCE). 2017;19(3):1-7.
2. Li J. A parallel probabilistic approach to factorize a semiprime. American Journal of Computational Mathematics. 2018; 13:8(2): 175-83.
3. da Silva JC. Factoring semiprimes and possible implications for RSA. In 2010 IEEE 26-th Convention of Electrical and Electronics Engineers in Israel 2010; 17.
4. Overmars A, Venkatraman S. Mathematical Attack of RSA by Extending the Sum of Squares of Primes to Factorize a SemiPrime. Mathematical and Computational Applications. 2020;25(4):63.
5. Mishra M, Chaturvedi U, Pal SK. A multithreaded bound varying chaotic firefly algorithm for prime factorization. In 2014 IEEE International Advance Computing Conference (IACC) 2014; 21: 1322-1325.
