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Abstract

Three dietary supplements are investigated in the present study. Aspartame is a low calorie sweetener utilized
instead of sugar for diabetic patients. Monosodium Glutamate (MSG) is used in varieties of food stuffs to enhance
food flavor. Meanwhile galactose is presents in many of food items such as milk, dairy products, fruits and
vegetables and overloads enhanced aging like process and altered body function. The present work aimed to
illustrate the effect of dietary supplements of aspartame, glutamate and galactose in retina of mother Wistar rats.
Virgin Wistar rats were mated with fertile male and zero date of pregnancy was determined. Pregnant rats were
orally administered aspartame (100 mg/kg), monosodium glutamate (500 mg/kg) and galactose (1 g/kg body weight)
from 6th day of gestation until parturition and 21 days post-partum. Four main groups of pregnant rats were used;
control, aspartame, glutamate and galactose treatment. Each animal group was composed of ten individuals. Mother
rats were sacrificed at 21 days post-partum and their retinas were dissected and processed for histological, and
transmission electron microscopic investigation. Biochemical assessments of vascular endothelial growth factor
(VEGF), endothelin-1 (ET-1), adhesion molecules (ICAM-1 & VCAM-1), 8-hydroxy-deoxyguanosine (8-hdG), iron,
and zinc content were done. The present findings revealed that the used dietary supplements induced retinal
damage assessed by degeneration of ganglion cells, inner and outer nuclear layer and widespread necrotic patches
of photoreceptor outer segment. A striking missing of outer nuclear and photoreceptor outer segments was detected
post-glutamate treatment. Glutamate and galactose treatment showed apparent increase of pleomorphic and
pyknotic nuclei of inner and outer nuclear cells. The retinal thickness was markedly decreased in experimental
groups especially in those of glutamate treatment. Retinal serotonin, dopamine and zinc and iron contents were
markedly depleted, however, VEGF and ICAM-1& VCAM-1 and 8-hydroxy-guanosine were overexpressed in
experimentally-treated groups compared to the control. It can be concluded that the applied dietary supplements
affected the retinal structure and function of mother rats.
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Introduction
Aspartame (L-aspartyl-L-phenylalanine methyl ester) is a low

calorie sweetener attained 200 times greater more than sugar. It is
absorbed immediately via the intestinal lumen and metabolized to
phenylalanine (50%), aspartate (40%) and methanol (10%) [1].
Aspartame was found to develop neurological and behavioral disorders
and development of seizures attack in mice [2]. Also, cognition [3],
headaches [4], alterations in mood and depression [5], migraines,
multiple sclerosis and blurred vision [6] were reported post-increased
supplementation of aspartame. Increase levels of phenylalanine and
tyrosine and aspartic acid in the brain, led to a decrease in brain
dopamine [7] and development of phenylketonuria disorder [8], the
main cause of demyelination and depletion of dopamine levels in brain
and retina of infants [9].

Monosodium Glutamate (MSG) is excitotoxic material widely used
as food enhancer in meats, poultry, seafood, snacks, and soups and
stews [10]. It is induced a visceral sensation from the stomach,
intestine and portal vein outside the sense organs region which is
described as “umami” taste. The average glutamate consumption has

increased dramatically in recent years [11] reaching up to 0.3-0.5 g per
day in European countries and 1.2-1.7 g per day in Asia [12].

Glutamate is metabolized by glutamine synthetase into nontoxic
glutamine following uptake by glutamate transporter, GLAST, into
Müller cells [13]. In the retina, glutamic acid is responsible for the
synaptic transmission between photoreceptor cells, bipolar cells and
ganglion cells and its overload is responsible for neuronal cell death
[14] such as retinal ganglion cells [15].

Galactose is presents in milk, dairy products, fruits and vegetables
[16]. Its absorption occurs across the brush border membrane of the
proximal jejunum and renal epithelium via the Na1-glucose co-
transporters SGLT1 and SGLT2 [17]. Abnormal galactose metabolism
occurred through impairment of galactokinase, galactose-1-phosphate
uridyltransferase, and UDP-galactose-4-epimerase, the enzymes
involved of its metabolism [18] leading to galactosaemia. Chronic
exposure of mice to D-galactose (100 mg/kg, S.C., 7 weeks) induced
neuronal damage of hippocampus and sub-granular zone in the
dentate and granular layer [19] leading to cognitive function and
Alzheimer's disease [20].

The present study aimed to illustrate the detailed retinal structures
and function through assessments histo-cytological structures and
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biochemical markers post-supplementation of aspartame,
monosodium glutamate and galactose.

Materials and Methods

Chemicals
All of the chemicals used were of highest purity. Aspartame,

monosodium glutamate and galactose were obtained from Sigma-
Aldrich Company. All of the used nutrients were dissolved in water
and orally administered daily at doses of 100 mg aspartame/kg [21],
500 mg MSG/kg [22] and 1 g galactose/kg [23] throughout gestation
and lactation period.

Experimental work
Virgin female and male Wistar albino rats (Rattus norvegicus) were

obtained from Laboratory Farm, Ministry of Health, and Cairo, Egypt.
They were acclimatized for 15 days before experimentation. Pregnancy
occurred after mating virgin female rat with fertile male by placing
them in plastic cages. In the next morning, zero date of gestation was
determined by observing sperm in vaginal smear and pregnant were
separated. They were kept in well aerated condition with 12 h light and
dark cycle. Free excess of diet and water were allowed ad-libitum. The
pregnant rats were divided into four groups; control, aspartame,
glutamate and galactose treated groups. Each group was composed of
10 individuals.

At 21 days post-partum, mother rats of both control and
experimentally treatment were euthanized by diethyl ether and
sacrificed. Ocular regions were dissected and their retinas were
separated and subjected to the following investigations:

• Transmission Electron Microscopy (TEM)

The specimens were fixed in 2.5% buffered glutaraldehyde, followed
on 1% osmium tetraoxide, dehydrated in ascending concentration of
ethyl alcohol, cleared in propylene oxide and embedded in epoxy–
resin. Semithin sections were obtained and stained with toluidine blue.
Ultra-thin sections were cut and stained with uranyl acetate and lead
citrate, and examined under a Joel 100CX transmission electron
microscope.

• Biochemical investigation

The retinal specimens were homogenized in 10% ice-cold 2.5 mM-
tris buffer (pH 7.5) and centrifuged at 14000 × g for 15 min at 4°C and
the supernatant was keep in deep freeze. Determination of serotonin
and dopamine were carried out as described to Schlumpf et al. [24].

Vascular Endothelial Growth Factor (VEGF) was determined by
R&D ELISA kit (Minneapolis, MN, USA). (HRP) and TMB substrate
were added to wells containing retinal samples and VEGF antibodies.
The color density was measured spectrophotometrically at 450 nm.

Intracellular Adhesion Molecule (ICAM)-1 and Vascular Adhesion
Molecule (VCAM)-1 were assayed using ELISA kit (R&D Systems;
Minneapolis, MN). Amount of 100 μL antibodies against recombinant
human rat ICAM-1 and VCAM-1 conjugated to horseradish
peroxidase were added to each well. After incubation, 100 μL of
tetramethylbenzidine was added for color development and optical
density was determined at wavelengths of 450 & 620 nm.

Endothelin-1 (EDN1) was assayed using ELISA Kit (USCN Life
Science Inc. Avidin (Biotin separated from raw chicken egg albumen)
conjugated with horseradish peroxidase was added and the amount of
bounded HRP was proportional to the amount of EDN1 at 450 nm.

Concerning 8-hydroxy-2-deoxy guanosine (8-OH-dG), its amount
was determined by the Bioxytech-ELISA Kit (OXIS Health Products,
Portland, OR, USA). A volume of 50 µL of sample or standards and 50
µL of primary antibody were added to the specimen of 8-OHdG-
coated microtiter plates and incubated at 37°C for 1 h. Thereafter,
treatment with horseradish peroxidase-conjugated secondary antibody
was done and it was followed by the addition of tetramethylbenzidine
to visualize the color which was measured at a wavelength of 450 nm
[25].

Iron and zinc were determined in dried tissues after lipid extraction
was performed by a mixture of chloroform and methyl alcohol at a
ratio of 2:1. Known weights of the dried samples were digested with
nitric acid of highest purity (1 mL/sample), diluted with 4 mL bi-
distilled water, and measured by atomic absorption spectrophotometer
[26].

• Statistical analysis

Data were recorded as mean ± SE and analyzed utilizing SPSS
software (Version 13) by one way post-hoc Analysis of Variance
(ANOVA) between studied groups and the level of statistical
significance was set at P<0.05.

Results

Biochemical observations
Table 1 illustrates the biochemical markers of retinal cell function of

mother rats treated with either aspartame or glutamate or galactose.
There was a detected depletion of retinal serotonin, dopamine and zinc
and iron contents and increase of VEGF and ICAM-1 & VCAM-1 and
8-hydroxy-guanosine in aspartame, glutamate and galactose treatment
compared to the control.

Morphometric assessments
Figure 1 illustrates the retinal thickness of aspartame, glutamate and

galactose treatment. The retinal thickness markedly decreased in
glutamate compared to galactose and aspartame treatment.

Aspartame
Compared to the control (Figures 2A-2E), mother rats that received

aspartame treatment during gestation and lactation period revealed
apparent alterations of histological structures such as comparative
reduction of ganglion cells, spongy-appearance of inner plexiform
layer, thinning of inner and outer nuclear layer and vacuolation of
photoreceptor outer segment. At ultrastructural level, the Retinal
Pigment Epithelium (RPE) possessed karyorrhexis of their nuclei. The
apical cytoplasmic microvillus structures were distorted. The
photoreceptor outer segment possessed numerous degenerated spots of
their stacked membranes. Damage of inner and outer nuclear cells and
neovascularization in ganglion and inner plexiform layer were
detected. Vacuolar degeneration of the ganglion cells was observed
(Figures 3A-3E).
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 DA (ng/mg) 5-HT (ng/mg)
VEGF (Pg/100

mg)
8-HDG (ng/100

mg)
ICAM-1

(ng/100 mg)
VCAM-1

(ng/100 mg)

Minerals

Fe (µg/g dwt) Zn (µg/g dwt)

Control 35.29 ± 1.84 133.03 ± 2.56 140.35 ± 1.93 1.23 ± 0.07 2.05 ± 0.06 1.29 ± 0.07 98.64 ± 2.28 29.17 ± 1.14

Aspartame 32.39 ± 1.84 121.47 ± 1.97 149.8 ± 2.49 *1.572 ± 0.07 2.17 ± 0.08 1.34 ± 0.04 91.94 ± 1.63 21.46 ± 2.00

Glutamate *18.00 ± 2.28 *120.85 ± 2.12 *156.86 ± 1.58 *1.33 ± 0.05 2.27 ± 0.05* 1.36 ± 0.037 *79.9 ± 2.28 *26.45 ± 2.28

Galactose 30.549 ± 2.28 *130.81 ± 2.06 *167.39 ± 1.84 *1.64 ± 0.07 2.39 ± 0.11 *1.42 ± 0.05 *127.09 ± 1.84 25.11 ±1.70

Table 1: Biochemical markers of retinal cell function of mother rats treated with either aspartame or glutamate or galactose. Each result represent
M±SE (n=5); C: Control; DA: Dopamine; ICAM-1: Intercellular adhesion molecule; Gl: Glutamate; VCAM-1: Vascular cell adhesion molecule; 5-
HT: Serotonin; VEGF: Vascular endothelial growth factor; 8-HDG, 8-hydroxyguanosine. *Significant at P<0.05.

Figure 1: Retinal thickness of mother rats supplemented aspartame,
glutamate or galactose. Each result represent M ± SE (n=5); GL:
Ganglion layer; INL: Inner nuclear layer; IPL: Inner plexiform layer;
ONL: Outer nuclear layer; OPL: Outer plexiform layer; PR:
Photoreceptor; R: Retina. *Monosodium glutamate and galactose
exerted significant at P<0.05.

Monosodium glutamate
Compared to the control, semi thin sections of glutamate-treated

mother rats revealed massive degeneration of ganglion cells, spongy-
appearance of inner plexiform layer, thinning of inner nuclear layer
and striking missing of outer nuclear and photoreceptor layer in 8 of
20 mother retina. There was a comparative decrease in the number of
pigment epithelium (Figure 4A). At ultrastructural level, the RPE
possessed karyorrhexis of their nuclei and disintegration of their apical
cytoplasm microvillus structures. Many of the inner nuclear cells
possessed karyorrhexis of their nuclei. There were a detected
malformed photoreceptor nuclei and photoreceptors. Dense
neovascularization was detected in inner and outer plexiform layer
(Figures 4B-4E).

Galactose
Compared to the control, semi thin sections of galactose-treated

mother rats revealed massive degeneration of ganglion cells, spongy-
appearance of inner plexiform layer, thinning of inner nuclear layer
and different foci of degenerated nuclear cell. There was a comparative
decrease in the number of pigment epithelium (Figure 5A). At
ultrastructural level, the ganglion cells were markedly disintegrated

and possessed neovascularization. Many of the inner nuclear and outer
nuclear cells become pleomorphic and showed electron-dense
chromatin material. Numerous blood vessels were detected at the outer
plexiform layer, at the interphase between inner and outer nuclear
layer. The photoreceptor outer segment revealed different necrotic
patches of their stacked membranes (Figures 5B-5E).

Figure 2: A-Photomicrograph of semithin section of retina of
control mother rats stained with toluidine blue showing regularly
oriented retinal layers. B-E: Transmission electron micrographs of
control retina of mother rats. B, C: Showing pigment epithelium in
contact with photoreceptor outer segment having regular stacked
membranes. D: Showing electron-dense outer nuclear cells. E:
Showing outer plexiform layer separating inner and nuclear layer.
Note horizontal and bipolar cells within inner nuclear cells. GC:
Ganglion cell; ILM: Inner limiting membrane; INL: Inner nuclear
layer; IPL: Inner plexiform layer; N: Nucleus; ONL: Outer nuclear
layer; OS: Outer segment; PE: Pigment epithelium.
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Figure 3: (A) Photomicrograph of semithin section of retina of
aspartame-treated mother showing reduction of ganglion cells,
vacuolation of inner plexiform layer, thinning of inner and outer
nuclear cells and damage of outer segment layer. (B, E)
Transmission electron micrographs of l retina of aspartame-treated
mother rats cells (A3) and outer plexiform layer separating inner
and nuclear layer (A4). B1-B4: Aspartame-treated mother rats
showing loose contact between pigment epithelium and
photoreceptor outer segment with different necrotic patches (B1
and B2), damaged outer (B3) and inner nuclear cells (B4). CC:
Choriocapillaries; DBC: Degenerated binuclear cell; DHC:
Degenerated horizontal cell; DOS: Degenerated outer segment; IPL:
Inner plexiform layer; Ly: Lysosomes; N: Nucleus; ONL: Outer
nuclear layer; PE: Pigment epithelium; MC: Muller cell.

Discussion
The observed findings revealed that supplementation of aspartame

(100 mg/kg), MSG (500 mg/kg) and galactose (1 g/kg) exhibited
marked reduction of retinal thickness, degeneration of ganglion cells
and development of spongiosis of inner plexiform layer. Glutamate
exhibited apparent reduction compared to the other treatments.

Similar atrophy of retinal thickness was reported in glutamate
treatment [27]. The decreased retinal thickness appeared resulted from
the missing outer nuclear cells and photoreceptors in mother rats
supplemented monosodium glutamate.

Similar findings of apoptic retinal ganglion cells were reported in
mice [27-29] (and rabbits [30] subjected to N-methyl-D-aspartate.
Administration of aspartame (200 mg/kg) to rats led to two fold
increase of phenylalanine and its product tyrosine in brain and plasma
level [31] and contributed to decrease the ganglion cells [32-35].
Monosodium glutamate exhibited similar reduction of ganglion cells in
rat [36] and rabbits [27].

Galactose associated damage retinal ganglion cells were reported in
experimentally induced diabetes of rats [37], dogs [38] and db/db Mice
[39]. D-galactose treatment represents a model of ageing-related
through increased production of galactitol which accumulated in cells
and reacts with amines group of to form advanced glycation end
products, and intern increase oxidative stress and cellular damage
[23,40]. The contribution of galactose in development of diabetes

resulted from its influences in increased accumulation of glycogen
phosphorylase and phosphorylated glycogen synthase, the promoter of
diabetes [41].

Figure 4: (A) Photomicrograph of semithin section of retina of
glutamate-treatment showing sticking missing of ganglion and
photoreceptors and marked reduction of outer nuclear cells and
damage of pigment cells. (B-E) Transmission electron micrographs
of retina of glutamate-treated mother rats. B: Showing damaged
pigment epithelium and outer nuclear cells. C: Showing pigment
epithelium with electron-dense mitochondria, disorganized
microvilli and macrophage with abnormal convoluted nuclear
envelope. D: Showing vacuolated inner plexiform and pyknotic
outer nuclear cells. E: Showing vacuolated inner plexiform and
abundant blood vessel with pyknotic endothelium. BV: Blood
vessel; CC: Choriocapillaries; DGC: Degenerated ganglion cells;
DON: Damaged outer nuclear; ILM: Inner limiting membrane;
INL: Inner nuclear layer; IPL: Inner plexiform layer; Ma:
Macrophage; N: Nucleus; ONL: Outer nuclear layer; PE: Pigment
epithelium; PINC: Pyknotic inner nuclear cell.

Also, aspartame, monosodium glutamate and galactose induced
damage of the retinal pigment epithelium characterized by
disorganization of apical microvillus structures, pyknosis or
karyrolysed nuclei, electron-dense mitochondria, and abundant
lysosomes. Defects of pigment epithelium may be involved in decrease
nutrient transport and impair phagocytosis of the terminal end of
photoreceptor outer segment leading to the development of necrotic
patches of their stacked membranes. Monosodium glutamate exerted a
striking missing of both outer nuclear cells and photoreceptor outer
segment in 8/20 mother rats. The observed retinal damage was
supported by the overexpression of 8-hydroxydeoxyguanosine, the
marker of cell damage.

Similar findings of increased 8-hydroxy-deoxyguanosine-positive
cells associated with retinal ganglion cell loss were observed after
intravitreal administration of NMDA (200 nmol/eye) [35].

It is know that RPE promoted nutrient transport from the
choriocapillaris to the photoreceptors [42] and continuous renewal of
their apical parts and phagocytosis [43] which maintains the function
of photoreceptors outer segment [44]. Tezel et al. [45] detected
expression of hemoglobin in RPE which exceeded that in human
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erythroblast. The photoreceptors are the dominant oxygen consumers
when compared to the inner retina [46].

Figure 5: (A) Photomicrograph of semithin section of retina of
galactose-treated mother rat showing neovascularisation and
missing of ganglion cells, pyknotic and degenerated inner nuclear
cell, vacuolation of outer nuclear cells and damage of photoreceptor
layer. (B-F) Transmission electron micrographs of retina of
galactose-treated mother rats. B: Ganglion layer showing
neovascularization and damaged ganglion cell. C: Showing necrotic
patches of photoreceptor outer segment. D: Showing spongiform
outer plexiform layer with developing neovascularization. E:
Showing pleomorphic damaged inner nuclear with pyknotic
horizontal and bipolar cells. Neogenesis of blood vessel is detected.
F: Showing abnormal outer nuclear cells with electron-dense nuclei.
BV: Blood vessel; DIN: Damaged inner nuclear; VDONC: Vacuolar
degenerated outer nuclear cell; DON: Damaged outer nuclear; GC:
Ganglion cell; ILM: Inner limiting membrane; PINL: Pyknotic
inner nuclear cell; IPL: Inner plexiform layer; N: Nucleus; ONC:
Outer nuclear cell.

Furthermore, the damage of RPE leads to altered RPE-
photoreceptor function causing retinal ischemia and enhanced the
development of neovascularization in ganglion and nerve fiber layer as
well as in the outer plexiform layer.

Retinal neovascularization were also reported in dog fed on 30%
galactose for 28-41 months [47,48]. Pericytes are mural or vascular
smooth muscle cells containing contractile fibers and unsheathed the
endothelial cells. There is a gap junction between the cytoplasm of
pericytes and endothelial cells, which allow diffusions of ions and small
molecules. Diabetes was found to increase of mitochondrial damage
leading to increase liberation of free radicals. This led to the
production of glycation end product facilitated in thickening of the
basement membrane, loss of inter-endothelial tight junctions and
pericyte apoptosis [49].

These are supported by the observed increase of retinal level of
ET-1, VEGF and adhesion molecules (ICAM-1 &VCAM-1). Similar
findings of retinal ischemia was induced in mice by NMDA and
expressed by increase interleukin-1β and TNF-alpha, and endothelial
adhesion molecules (ICAM-1) and leukocyte accumulation in the
retinal vessels [50].

Endothelin 1 (ET-1) is contributed to the development of
microangiopathy in patients with type-2 diabetes [51] and VEGF is
associated with retinal vascular leakage, neovascularization in Kimba
mouse eyes [52] and increased the expression of adhesion molecules in
the retinal vasculature [53].

The damage of retinal structures were supported by the observed
contribution of the applied nutrients to the depletion of retinal
dopamine and serotonin levels; the main neurotransmitters that co-
ordinate retinal function [54] and produced by ganglion cells and their
axons [55]. Depletion of the dopamine system during retinal damage
may lead to retinal ischemia [56] which is represented as arterial
thrombosis in atherosclerotic patient [57].

Also, there is a detected marked depletion of retinal contents of zinc
and iron of mother rats supplemented aspartame, glutamate and
galactose. The retina demonstrated high amounts of zinc especially in
the photoreceptors which varies in dark and light, indicating a role for
zinc in a light-regulated process. Zinc deficiency in humans may
induce abnormal dark adaptation and/or age-related macular
degeneration [58]. Retinal zinc deficiencies were reported in
spontaneous diabetes mellitus [59]. Patients with leukocyte zinc-
deficiency had impaired photoreceptor function [60]. In pigmented
rats, zinc deficiency led to accumulation of lipofuscin in the RPE and
reduction at Bruch's membrane [61]. Also, iron is important in many
metabolic processes and its abnormal shift may contribute to the
development of diseases. In mice, mutation of the iron exporter
ceruloplasmin led to age-dependent retinal iron overload and increase
retinal degeneration characteristic of age-related macular degeneration
[62]. Anemic children exhibited thinning peripapillary retinal nerve
fiber layer [63].

Finally, it can be concluded that aspartame, glutamate and galactose
supplementation are contributed to altered their retinal structure and
function. These were carried out via different pathways such as
cytological structure, neurotransmitters, VEGF, ET-1, adhesion
molecules and zinc and iron elements.
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