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Introduction
In mammals, DNA methylation is associated with a number of key 

processes including genomic imprinting, X-chromosome inactivation, 
suppression of repetitive elements, and carcinogenesis. Methylation 
of C residues spontaneously deaminates to form T residues over time; 
hence CpG dinucleotides steadily deaminate to TpG dinucleotides, 
which is evidenced by the under-representation of CpG dinucleotides in 
the human genome (they occur at only 21% of the expected frequency) 
[1-3]. DNA methylation plays an important role in the development of 
cancers. A large body of evidence has demonstrated that genes with high 
levels of 5-methylcytosine in their promoter region are transcriptionally 
silent. DNA methylation can possibly affect the transcription of genes 
in two ways. First, the methylation of DNA itself may physically 
impede the binding of transcriptional proteins to the gene, [4] and 
secondly, likely more important, methylated DNA may be bound by 
proteins known as methyl-CpG-binding domain proteins (MBDs). The 
latter can mediates the transcriptional silencing of hypermethylated 
genes in cancer. There are two kinds of abnormal methylation 
(hypermethylation and hypomethylation) that are associated with a 
large number of human malignancies. Hypermethylation typically 
occurs at CpG islands in the promoter regions, where unmethylated 
CpGs are grouping in clusters. Hypermethylation is often associated 
with gene inactivation [5].  On the other hand, hypomethylation, in 
general, is linked to chromosomal instability and loss of imprinting [6].

Data Sets
Numerous databases have been constructed to archive DNA 

methylation profiles obtained through biochemical experiments, 
and to link such information with various genotypic and phenotypic 
information. Among these databases, Meth Cancer DB, PubMeth, 
and Methy Cancer contain cancer-related methylation information. 
Meth Cancer DB contains the data collected from over 300 resources 
about cancer-related aberrant CpG methylation. It focuses on the 
CpG islands around genes (currently covering 2,199 genes) and 
experimental designs such as diagnosis and prognosis [7]. PubMeth 
(http://mit.lifescience.ntu.edu.tw/) is based on literature search, and 
contains over 440 genes that are reported to be methylated in over 43 
cancer types [8]. It concentrates on methylation frequency of genes in 
cancer samples without systematically distinguishing between cancer 
subphenotypes. MethyCancer integrates data from public resources 

(e.g., Meth DB and Human Epigenome Project (HEP)) and from 
data produced from China’s Cancer Epigenome Project. It currently 
contains over 485 annotated cancer genes with methylation data from 
511 cancer types [9].

In addition, mPod contains the genome-wide DNA methylation 
profiles in 16 normal tissues/cell types that were obtained by using 
the MeDIP-chip technology accompanied with bioinformatics 
processing. Scientists based DNA methylation profiling strategy 
on methylated DNA immunoprecipitation (MeDIP), a recently 
developed technique,which utilizes a monoclonal antibody against 
5-methylcytosine to enrich for the methylated fraction of a genomic
DNA sample [10,11]. Me DIP combined with microarrays is a powerful 
approach for DNA methylation profiling [10-13]. Recently, we have
generated reference human genome-wide DNA methylation profiles
for 13 normal somatic tissues, placenta, sperm, and the GM06990
immortalized cell line [14]. Several genome-wide studies show that
DNA methylation profiles in mammals are tissue specific [8,15-18],
and have performed the most comprehensive genome-wide study of
human tissue-specific differentially methylated regions (tDMRs) and
approximately 18% of the genomic regions were classified as tissue-
specific differentially methylated regions (tDMRs) [16]. In promoter
regions, there is a bimodal distribution of observed/expected CpG
densities (CpGo/e) [17-19], whose population corresponds to CpG
islands (CGIs). The recent study by Weber et al. [19] shows that a
rather complex correlation between CpG-poor promoter methylation
and gene expression-certain promoters with few CpGs were shown
to be active and methylated, whereas other promoters of that group
can be unmethylated when active. On the other hand, we observed
that the populations of unmethylated non-promoter CGIs (CpGo/e
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>0.6) in the various nonpromoter categories have a strikingly similar
“bell-shaped” distribution to the unmethylated CGI-promoter
population. Compared with the promoter-CGIs, non-promoter CGIs
are constitutively unmethylated [20].

Methods
We build a computational model to identify those CpG islands 

that are methylated in colon cancer but unmethylated in normal cells, 
which we call cancer-related differentially methylated (CRDM) CpG 
islands hereafter. We first combine multiple information resources to 
form the training data set that consists of the CRDM CpG islands and 
consistently unmethylated CpG islands (e.g. mpod). We then evaluate 
the discriminative power of various CpG island features, and obtain 
a lower-dimensional but more informative feature space through 
principal component analysis. Finally, we develop a prediction models 
for those CpG islands whose methylation differentiation is related 
to colon cancer, and evaluate these models through extensive cross-
validation and generalization testing experiments. 

A key step for building computational predictive models is to select 
features. For the prediction of DNA methylation status, our and others’ 
previous experiences have shown that both the genetic and epigenetic 
information are effective. Particularly, the genetic features include: (1) 
general attributes (e.g., length, observed/expected CpG ratio) of the 
CpG island, (2) DNA composition patterns of the CpG islands, (3) 
distribution patterns of the functional or conserved elements within 
or near the CpG island, (4) structural or physicochemical properties 
of the CpG island, (5) functions of the genes within or near the CpG 
island, and (6) the extent of conservation of the CpG island among 
species. And, the epigenetic features mainly regard the methylation and 
acetylation status of the histones.

As a result, we generated 757 features using the above attribute 
categories. Compared to the size of our training data set (see Data 
Set Section), this dimension of the feature space is prohibitively high, 
which will potentially lead to classifier designs that are too expensive to 
implement or that cannotwell generalize to unseen data. Therefore, we 
performed a two-step feature selection procedure, where the statistical 
test was used to select those features that are highly correlated with the 
methylation (differentiation) status of CpG islands, and the principal 
component analysis (PCA) was used to minimize the redundancy in 
the features.

Two statistical tests, Chi-squared and Kolmogorov-Smirnov (KS) 
tests, were used to identify those features whose statistical patterns 
are significantly different between the positive and negative datasets. 
Chi-squared test is a statistical test applied to sets of categorical data 
to evaluate how likely it is that any observed difference between the 
sets arose by chance. It is used to assess two types of comparison: tests 
of goodness of fit and tests of independence. The test of goodness of 
fit establishes whether or not an observed frequency distribution 
differs from a theoretical distribution. The test of independence 
assesses whether paired observations on two variables, expressed in 
a contingency table, are independent of each other. In statistics, the 
Kolmogorov-Smirnov test is a nonparametric test of the equality of 
continuous, one-dimensional probability distributions that can be 
used to compare a sample with a reference probability distribution can 
be called one-sample Kolmogorov-Smirnov test, or to compare two 
samples named two-sample Kolmogorov-Smirnov test. Specifically, 
the Chi-squared tests were applied to categorical features, including the 
number of functional and evolutionarily conserved elements. And, the 
KS tests were applied to the numeric features, including CpG is land 

general attributes, DNA composition frequency and z-scores, average 
scores of functional and evolutionarily conserved elements, and the 
structural properties. A feature was selected if the p-value rendered by 
the statistical test is less than 0.05.

Although statistical tests may identify those features showing 
correlation with the CpG island aberrant methylation, the identified 
features might be inter-correlated themselves. For example, DNA 
sequence and structure properties are likely to be correlated, because 
most DNA structures are predicted based on DNA sequences. The 
correlation between features makes the feature space unnecessarily 
high-dimensional. To minimize the redundancy in the features, we 
performed the PCA on those methylation-related features that were 
selected via the above statistical tests. The PCA uses an orthogonal 
transformation to convert a set of values of possibly correlated 
dimensions into a set of values of uncorrelated dimensions called 
principal components. After PCA transformation, the feature 
components are completely decorrelated and the information contained 
in the original feature space before the transformation is maximally 
retained in the first several number of components of the new feature 
space. Therefore, by keeping only the first several components of the 
new feature space, most of the information can still be retained while 
the redundancy in the feature collection is greatly removed and the 
dimensionality of the feature space is greatly reduced. For PCA to work 
properly, we subtracted the mean from each of the feature dimensions.

Results and Discussions
We investigated 177 genes aberrantly methylated in colon cancer, 

treating the housekeeping genes as the control. Through statistical 
tests, we identified 75 features having different distribution between 
aberrantly methylated and constantly unmethylated CpG islands. 
These 75 features include one CpG island specific attribute, 58 DNA 
composition features, eight DNA structure features, six TFBS-related 
features, and two evolutionarily conserved element-related features. 
By using the first 40 principal components that retains 99.99% of the 
variance, our support vector machine based classifier can reach  99% 
specificity,  92% sensitivity, and  92% accuracy in distinguishing the 
aberrantly methylated in colon cancer from the constantly unmethylated 
CpG islands. Figure 1 shows the histogram of the predicted scores of all 
CpG islands for the potential of aberrant methylation in colon cancer.

Genes with top predicted scores are HOXA3, SLITRK1, FEZF2, 
DLX5, and FOXD2. We further did literature search to confirm the 
relationship of these genes with colon cancer. Extensive literature 
search demonstrates that some of these genes are highly associated 

Figure 1: Histogram of the predicted scores of all CpG islands for the 
potential of aberrant methylation in colon cancer.
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with cancer. Genomic abnormalities leading to colorectal cancer (CRC) 
include somatic events causing copy number aberrations (CNAs) 
as well as copy neutral manifestations such as loss of heterozygosity 
(LOH) and uniparental disomy (UPD).Combining GISTIC (Genomic 
Identification of Significant Targets in Cancer) ranking with functional 
analyses and degree of loss/gain, scientists identified eight genes in 
regions of significant gain, including HOXA3, as novel genes in their 
association with CRC [21-23]. In addition to CRC, scientists also 
observed that HOXA3 gene expressed in majority of breast/prostate 
cancer cell line cells [24] and ovarian cancer cell lines, including SK-
OV3, TOV-21G, SW 626 and OV-90 [25].

Recently, several reports have indicated that single nucleotide 
polymorphisms (SNPs) in microRNA-target sites associate with 
cancer risk, treatment response and outcome [26]. miRNA target site 
mutations may affect function and result in cancer susceptibility [27] 
and have also been shown to be of potential importance for human 
disease as a mutation in a putative miR-189 binding-site in human 
SLITRK1 may be linked to Tourette’s syndrome [28].

Studies also have shown that the aberrant expression of transcription 
factor DLX5 is also involved in some human malignancies [29] and 
Dlx5 can act as an oncogene in lymphomas and lung cancers [30]. DLX5 
mRNA is abundantly expressed in many cancer cell lines derived from 
malignant tissues of breast, brain, lung, skin and ovary, but expression 
of DLX5 was low or undetectable in tumor cells from patients with or 
colorectal, prostate and kidney cancers [31]. The over expression of the 
DLX5 gene in mammalian cells stimulates cell proliferation [32] by 
regulating the expression of MYC, which can regulates transcription 
of numerous target genes involved in tumorigenesis [30] and the over 
expression can be observed in endometrial carcinoma, non-small 
cell lung cancer (NSCLC) and small cell lung cancer [29]. Moreover, 
Knockdown of DLX5 in xenografts of human ovarian cancer cells 
resulted in markedly diminished tumor size. In addition, DLX5 was 
found to cooperate with HRAS in the transformation of human 
ovarian surface epithelial cells. These data suggest that DLX5 plays a 
significant role in the pathogenesis of some ovarian cancers [31]. The 
knockdown of the DLX5 expression using siRNA results in the arrest 
of cell proliferation [32], DLX5 has a direct effect on the expression of 
proto-oncogene c-myc. They allow us to regard DLX5 as a promising 
target for which specific ligands that have the properties of oncogenesis 
inhibitors can be found [33]. Thus, these top predicted genes can be 
prioritized for molecular biologists in designing wet-lab experiments 
for the epigenetic association with cancer.

Conclusions
We investigated patterns indicative of methylation variation in 

normal tissues versus cancerous tissues. We performed the analysis of 
aberrant methylation in a colon cancer. We correlated various features 
with cancer related aberrant methylation through various statistical 
tests and machine learning. We also used our predictive models to 
all promoter CpG islands in human genome to prioritize potentially 
aberrantly methylated genes in cancer. Genes with top predicted scores 
are generated to facilitate web lab validation. 
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