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ABSTRACT
Leishmania donovani, a kinetoplastid parasite causing leishmaniasis, is an opportunistic parasitic pathogen that affects 

immunocompromised individuals and is a common cause of Kala-azar. Specific parasite molecules can be delivered 

into host epithelial cells and may act as effector molecules for intracellular parasite development. So, there is a need 

to develop new approaches to understanding the interaction between the host and the pathogen. In our study, we 

built a weighted gene co-expression network using differentially expressed genes obtained through analysis of 

leishmaniasis-infected patients. Our goal was to identify key signature genes and pathways associated with visceral 

leishmaniasis infection by network biology analysis which can identify the most influential genes in the gene co-

expression interaction network. We identified five prominent genes, IFNG, SC5D, LSM1, CMC2, and SAR1B, with 

higher interamodular connectivity, as the key signature genes. A deep neural network model-variational autoencoder 

was utilized to create new features, and a support vector machine validated the key signature genes. These key 

signature genes are involved in various biological processes like cytokine-cytokine receptor interaction, TGF-beta 

signaling pathway, antigen processing and presentation, IL-17 signaling pathway, Th1 and Th2 cell differentiation, 

and T-cell receptor signaling pathway. Besides, we also identified 04 significant miRNAs targeted with key signature 

genes, including hsa-miR-340-5p, hsa-miR-325-3p, hsa-miR-182-5p, hsa-miR-1271-5p/hsa-miR-96-5p. Further, 

analysis of the differentially expressed genes revealed that many critical cellular responses were triggered by 

visceral leishmaniasis infection, including immune responses and inflammatory and cell apoptosis. We get FDA 

approved anti-inflammatory agents emapalumab and methylprednisolone as a re-proposed drug for leishmaniasis 

cure. Our study can enhance the understanding of the molecular pathogenesis of visceral leishmaniasis infection 

and have implications for the plan and execution of mRNA expression tools to support early diagnostics and 

treatment of visceral leishmaniasis infection.   
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INTRODUCTION
L. donovani is a kinetoplastid parasite causing leishmaniasis. An
estimated 700000 to 1 million new cases and some 26000 to
65000 deaths occur annually due to leishmaniasis [1].
Pentavalent antimonials were earlier used as a first-line antibiotic
against leishmaniasis-however, 60% of patients in Bihar were
unresponsive to this drug. Thiol metabolism of the parasite is

reported for pentavalent antimonial resistance [2].
Bioinformatics algorithms can be utilized for drug target
identification. One approach is the analysis of metabolic
pathways as it provides an insight into pathogen metabolic state.
This approach can result in identifying essential and selective
novel drug targets. As pathogens involve multiple metabolic
pathways, analyzing the pathways at a system level is more
prudent than focusing on a few genes [3]. During an infection,
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Discriminant Analysis (FLDA) are commonly used to address 
this challenge [10-12].

Autoencoders are a type of neural network that can learn to 
compress high-dimensional data into a lower-dimensional 
representation. The input data is first encoded into a 
compressed representation, and then decoded back into its 
original form [13]. The autoencoder is trained to minimize the 
difference between the input and the output, effectively learning 
to extract the most important features in the data [14]. 
Variational Autoencoder (VAE) is an improvement over the 
traditional autoencoder that models the distribution of the 
compressed representation instead of just the mapping from 
input to output. VAEs are commonly used for unsupervised 
learning and can generate new data similar to the input data 
[15].

In the context of microarray gene expression data, VAEs can be 
used to effectively reduce the dimensionality of the data and 
extract meaningful features related to a specific disease, such as 
leishmaniasis, as you mentioned. By using VAEs, it is possible to 
identify important genes and pathways related to the disease, 
which can lead to better understanding of the disease and 
development of more accurate diagnostic tools or treatments.

The study aimed to identify key genes and construct a regulatory 
network involved in the progression of visceral leishmaniasis, a 
parasitic disease caused by Leishmania donovani. To achieve this, 
the researchers constructed a co-expression network of 
Differentially Expressed Genes (DEGs) using weighted gene 
co-expression network analysis.

The most significant modules in the network were identified, 
and key signature genes were determined using the module 
membership measure, also known as eigengene based 
connectivity (kME). Genes with a kME value close to 1 were 
considered key signature genes and used as a feature classifier. 
The researchers applied a variational autoencoder to genes with 
significantly different expression data, and the results were 
mapped to a 15-dimensional representation as another type of 
leishmaniasis feature.

Finally, the study established a regulatory network of gene-
miRNA targets for the progression of visceral leishmaniasis. This 
network can provide insight into the molecular mechanisms 
underlying the disease and potentially identify new therapeutic 
targets for treatment [16].

MATERIALS AND METHODS
The detailed workflow is as follows (Figure 1).
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the metabolic rate of a pathogen was reported to be changed. 
We can identify new therapeutic drug targets by analyzing the 
metabolic changes during pathogenesis [4]. Multi-protein 
complexes mediate critical cellular functions of pathogens. 
These protein complexes' functionalbility depends on protein-
protein interaction between multiple protein complex sub-units. 
Identification of these sub-networks of protein-protein 
interaction can result in a novel therapeutic interventional site 
[5]. It has been shown that biological networks tend to be robust 
against random perturbation, but disruption of hubs often leads 
to system failure [6].

WGCNA is a powerful tool for identifying key genes and 
pathways associated with complex diseases, including cancer and 
infectious diseases. The methodology has yet to be applied to 
leishmaniasis data, but it has the potential to provide valuable 
insights into the underlying molecular mechanisms of the 
disease. Weighted Gene Co-expression Network Analysis 
(WGCNA) is a widely used bioinformatics approach for 
identifying gene modules that are biologically meaningful and 
functionally related to a disease or phenotype of interest. 
WGCNA uses a correlation based approach to group genes that 
have similar expression patterns across different samples into 
modules or clusters [7]. The modules can then be correlated 
with the phenotype of interest, such as disease status or clinical 
outcome, to identify gene networks that are associated with the 
disease.

Weighted Gene Co-expression Network Analysis (WGCNA) is a 
widely used bioinformatics method that helps identify 
modules of functionally related genes based on their co-
expression patterns across different samples. This method is 
particularly useful for identifying groups of genes that are 
differentially expressed in disease samples compared to normal 
samples, as it can help identify gene modules that are closely 
related to the disease of interest [8].

By clustering genes into modules based on their 
expression patterns, WGCNA can help identify key 
biological pathways that are dysregulated in disease. These 
modules can then be further studied to identify potential 
therapeutic targets or biomarkers for diagnosis and treatment. 
Additionally, WGCNA can help identify hub genes that play a 
central role in regulating the expression of other genes 
within a module, providing further insights into the 
molecular mechanisms underlying disease [9].

In the case of leishmaniasis, we can use WGCNA to 
identify gene modules that are differentially expressed 
between normal and leishmaniasis samples. By examining the 
modules and the genes within them, we can gain insight 
into the biological pathways and mechanisms that contribute 
to the development and progression of leishmaniasis. This 
information can be used to develop more effective diagnostic 
and therapeutic approaches for the disease.

Microarray gene expression data typically have a high number of 
genes (i.e., features) and a small number of samples, which 
makes it challenging to build accurate classifiers or models. 
Dimensionality reduction techniques such as Principal 
Component  Analysis (PCA),  autoencoderm and Fisher's Linear
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Figure 1: The detailed workflow is as follows.



modeling complex experimental designs, performing 
normalization and quality control, and identifying 
differentially expressed genes. The workflow I outlined is a 
general framework that can be adapted to many different 
experimental designs and datasets, and can be used to generate 
high-quality results that are suitable for downstream 
analysis and interpretation. To summarize, the steps involved are:

•

•

Co-expression network and module construction

The goal of standard differential expression analysis is to identify 
individual genes. When each gene is treated as a separate entity, 
it is easy to lose sight of the forest for the trees, failing to 
recognize that thousands of genes can be organized into a small 
number of modules rather than presenting a list of individual 
genes, WGCNA is beneficial for comprehending the "system." 
WGCNA focuses on modules rather than individual genes, 
significantly reducing the number of tests required. We utilized 
the WGCNA R package to build the co-expression network. A 
scale-free network is better suited to describing gene-gene 
relationships. Signed networks are preferred because they 
preserve sign information, which is defined as aij=|0.5
+0.5*cor(xi,xj )|^β with a value of β for signed networks is 12. For
signed networks with scale-free topology, a 'soft threshold' value
of 14 was chosen by estimating scale-free topology 'fit index' and
mean connectivity as a function of the soft-thresholding power.
To build our co-expression network, we first generated a "Pearson
correlation matrix", also known as a similarity matrix. We then
used the power transformation to convert the similarity matrix to
an adjacency matrix, as suggested [19,20]. Following that,
modules were constructed and merged using a dynamic branch
cut tree method, yielding five modules with a merging threshold
value of 0.3.
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Data set acquisition

In this study, the leishmaniasis microarray dataset GSE 
125993 from the gene expression omnibus was used, which 
contained whole blood transcriptional profiles associated 
with asymptomatic infection, active disease, and in treated 
cases of 84 samples. GSE 125993 is a microarray dataset 
combining the results of two independent experiments to 
understand the host response in disease cases better. 
Fakiola, et al., carried out experiment 1 (GSE125992) with 
the following conditions: Active visceral leishmaniasis case, 
treated with 15 doses of non-liposomal Amphotericin B on 
alternate days, quantiferon positive asymptomatic, endemic 
healthy control (serology and quantiferon negative), and 
HighAb-high anti-leishmanial antibody levels by direct 
agglutination test. Experiment 2 (GSE125993) Fakiola et 
al., included an active visceral leishmaniasis case, an active 
visceral leishmaniasis case treated with a single dose of 
liposome encapsulated amphotericin B, a quantiferon 
positive asymptomatic, an endemic healthy control 
(serology and quantiferon negative), and highAb-high anti-
leishmanial antibody levels measured by direct 
agglutination [17].

Data preprocessing and quality check of samples

We used the R packages to preprocess the microarray 
dataset GSE 125993 and purged incomplete expression 
data records. Removing genes with zero variance is a 
common preprocessing step in gene expression analysis, 
and it can help to improve the accuracy and 
interpretability of downstream analyses. By removing 
genes with zero variance, we are essentially removing any 
genes that do not vary in expression across the samples 
in dataset. These genes are not informative for 
differential expression analysis or network construction, 
as they do not exhibit any differential expression 
patterns or correlations with other genes [18].

Moreover, including these genes in analysis can lead to 
problems with some statistical models, such as those 
that rely on the assumption of non-zero variance, and may 
also affect the quality of results. Overall, removing genes 
with zero variance is a standard data cleaning step that 
can help to ensure that analysis focuses on the most 
informative genes, and can improve the quality of results.

Pruning non-differentially expressed genes

The workflow I described is a common approach for 
performing differential gene expression analysis using the 
Limma package in R. Limma is a widely used package for 
this type of analysis, and it provides a powerful set of tools 
for modeling complex it provides a powerful set of tools  for
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Create a design matrix: This matrix specifies which samples 
are applied to which channels on the array. It is essentially 
an indicator matrix that indicates the experimental design.
Fit a linear model: Use the "lmFit" function to fit a linear 
model with the expression data and the design matrix as 
arguments.
Create a contrast matrix: Use the "makecontrasts" function 
to create a contrast matrix for relevant comparisons.
Compute fold-changes and t-statistics: Use the "Contrast.fit" 
function to compute fold-changes and t-statistics for the 
contrast of interest.
Moderation of standard errors: Use the "eBayes" function 
to moderate the standard errors.
Identify differentially expressed genes: Compute moderated 
t-statistics and log-odds of differential expression for each
gene. Identify highly ranked differentially expressed genes
with a p-value of <=0.05.
Filter out non-differentially expressed genes: Remove genes
that are not differentially expressed for any contrast.

•

•

•

•

•



Module visualization and identification of signature
genes

A topological overlap matrix plot was used to visualize modules
in the co-expression network. A topological overlap matrix plot
is a visual representation of the topological overlap between
genes in a co-expression network. It allows one to identify
modules of genes that are highly interconnected and share
similar expression patterns. The intramodular connectivity of
genes within a module can be used to define a measure of
module membership, or kME. The kME of a gene reflects its
degree of connectivity within a module, with higher kME values
indicating a greater degree of membership in the module.

By identifying genes with high kME values, one can identify key
signature genes that are centrally located within the co-
expression module and likely to play important roles in the
biological processes associated with the module. Cytoscape is a
popular software tool for visualizing and analyzing complex
networks, including co-expression networks generated by
WGCNA. It allows one to create customized network
visualizations, perform network analyses, and integrate data
from multiple sources to gain insights into the structure and
function of biological networks.

Feature creation using variational autoencoder

An application of a Variational Autoencoder (VAE) is reducing
the dimensionality of gene expression data and using the
resulting compressed representation as a feature for disease
classification. This is a common application of VAEs, as they are
particularly useful for learning representations of high
dimensional data that can be used for downstream tasks like
classification.

To clarify, an autoencoder is a neural network architecture that
is designed to learn a compressed representation of input data.
The network is trained to reconstruct the input data from this
compressed representation, so that the output layer has the same
number of neurons as the input layer. The hidden layer(s) of the
autoencoder has fewer neurons than the input and output
layers, which forces the network to learn a compressed
representation that captures the most salient features of the
input data.

A VAE is a type of autoencoder that learns a compressed
representation that is also a probabilistic model of the input
data. Specifically, the hidden layer of the VAE learns the mean
and variance of a probability distribution over the input data.
During training, the network learns to minimize the
reconstruction error (like a traditional autoencoder) while also
encouraging the distribution learned by the hidden layer to be
similar to a standard normal distribution. This encourages the
VAE to learn a compressed representation that captures the
most important features of the input data while also
maintaining a smooth and continuous distribution in the latent
space.

This approach is interesting because gene expression data is
often high-dimensional, meaning there are many genes and
measurements for each sample, which can make it difficult to
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Identification of key modules in co-expressed gene
networks

Genes with similar expression partners are of interest because 
they may be tightly co-regulated, functionally related members of 
the same pathway. The analysis of co-expression networks reveals 
information about the underlying network and the group of 
genes whose expression levels are co-regulated. How do you 
identify the key players in a network or pathway of intriguing 
genes? Key signature genes in the entire network are frequently 
uninteresting, particularly in co-expression networks, but genes 
with high connectivity in interesting modules can be exciting. 
Some transcriptions play multiple roles depending on the 
cellular environment, so statistical significance does not always 
imply biological relevance. What are the advantages of 
constructing networks and identifying co-expression modules 
over considering each candidate gene individually? The answer is 
that identifying multiple therapeutic targets within the same 
pathway is beneficial in the search for druggable targets. The 
WGCNA R package employs the first principal component to 
determine how modules are related, referred to as 
Module Eigengene (ME). The modules of interest were 
discovered by examining the relationship between module 
eigengenes and clinical traits. In addition, a measure of 
Module Significance (MS) and gene significance was 
computed. A measure of Module Significance (MS) is 
defined as the average gene significance of all genes in the 
module. Gene significance is determined as a link between 
two genes. The gene modules with the highest MS and GS 
absolute value were more relevant in leishmaniasis [21,22].

Functional and pathway enrichment analysis of
modules

The passage describes a common approach used in 
systems biology and bioinformatics to analyze gene expression 
data. In this approach, genes are not analyzed individually, but 
rather in groups or modules that are believed to have related 
functions. The modules are typically identified based on 
their co-expression patterns, meaning that the genes in 
each module tend to be turned on or off together under 
different conditions.

Once the modules are identified, they can be further 
characterized by performing enrichment analysis. This 
involves comparing the genes in each module to a database 
of known biological functions, such as Gene Ontology (GO) 
terms or Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways, to see which functions are overrepresented in the 
module.

DAVID is a popular tool for performing enrichment 
analysis, and it can provide information on the top terms or 
pathways that are enriched in each module. For example, 
the top ten KEGG pathways and the top ten terms in each 
G.O. domain can be identified for each module, giving 
insights into the potential biological functions and processes 
that are associated with the module.

Overall, module based analysis and enrichment analysis are 
powerful tools for understanding the complex relationships 
between genes and their functions in biological systems.
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made by the model on a set of data for each class. The four types
of elements in a confusion matrix are:

By analyzing the values in the confusion matrix, we can calculate 
various metrics such as accuracy, precision, recall, F1-score, and 
others to evaluate the performance of the classification 
algorithm.

Accuracy: Accuracy is a common metric used to evaluate the 
performance of a machine learning model. It is calculated by 
dividing the number of correct predictions made by the model 
by the total number of predictions made. The formula for 
calculating accuracy is:

Accuracy=(Number of correct predictions)/(Total number of 
predictions)

For example, if a model correctly predicts 90 out of 100 samples, 
then the accuracy would be 90/100 or 0.9 (or 90%).

It's worth noting that accuracy is not always the best metric to 
use, especially if the classes in the dataset are imbalanced. In 
such cases, other metrics such as precision, recall, or F1 score 
may provide a more informative evaluation of the model's 
performance.

Sensitivity: Sensitivity is a statistical measure that assesses the 
ability of a model or test to correctly identify positive cases out 
of all true positive cases. In other words, sensitivity is the 
proportion of true positive cases that are correctly identified as 
positive by the model or test.

The sensitivity is calculated as the number of true positive cases 
divided by the sum of true positive cases and false negative cases. 
This can be expressed as:

Sensitivity=True positive/(True positive+False negative)

A high sensitivity value indicates that the model or test is able to 
correctly identify a large proportion of positive cases, while a low 
sensitivity value indicates that many positive cases are missed by 
the model or test. Sensitivity is particularly important in 
applications such as medical diagnosis or disease screening, 
where identifying all positive cases is crucial to avoid missing 
important cases.

Precision: Precision is a statistical measure that assesses the 
accuracy of positive predictions made by a model or test. It 
measures the proportion of true positive cases out of all positive 
predictions made by the model or test. In other words, precision 
is the measure of how many of the predicted positive cases are 
actually true positive cases.
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analyze and interpret. Dimensionality reduction techniques, like 
the variational autoencoder, can be used to reduce the number 
of features to a more manageable level while still retaining 
important information.

Using the low dimensional representation generated by the 
autoencoder as a feature for a disease classification task is a 
common approach in machine learning. By training a classifier 
to distinguish between samples with and without leishmaniasis 
using the low-dimensional representation as input, it is possible 
to evaluate the effectiveness of the dimensionality reduction 
approach and potentially improve the accuracy of the 
classification task.

It's worth noting that the performance of the approach will 
depend on various factors, such as the quality and size of the 
original gene expression data set, the hyperparameters used in 
the autoencoder, and the choice of classifier. Nevertheless, this 
is an interesting application of autoencoders in bioinformatics 
and demonstrates the potential of machine learning techniques 
for analyzing complex biological data.

We created new gene expression data set with low 
dimensional information using a variational 
autoencoder. Further, dimensional information of created 
gene expression data set was used as a feature of the disease data 
set to classify leishmaniasis.

Evaluation of key signature genes with a classification 
algorithm
We used a machine learning algorithm, specifically a 
support vector machine with a Radial Basis Function (RBF) 
kernel, to validate the key signature genes identified in the 
study. The microarray gene expression data sets were first 
reduced to a lower dimension, and then effective features 
that were closely related to leishmaniasis were extracted. 
To evaluate the performance of the support vector machine 
algorithm, several performance measures were calculated. 
These measures include classification accuracy, which is the 
proportion of correctly classified instances out of the 
total number of instances; confusion matrix, which shows 
the number of true positives, true negatives, false positives, 
and false negatives; Area Under the R.O.C. Curve 
(A.U.C.), which is a measure of the algorithm's ability to 
discriminate between positive and negative instances; sensitivity, 
which is the proportion of true positives out of all positive 
instances; specificity, which is the proportion of true negatives 
out of all negative instances; and cross-entropy loss, which 
measures the difference between the predicted probability 
distribution and the true probability distribution.

By using these performance measures, we were able to 
evaluate the effectiveness of the support vector machine 
algorithm in accurately classifying instances as either positive 
or negative for leishmaniasis based on the reduced 
dimension of microarray gene expression and the effective 
features closely related to the disease.

Confusion matrix: A confusion matrix is a table used to 
evaluate the performance of a classification algorithm. It 
summarizes the number of correct and incorrect predictions
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True Positive (TP): The number of instances that are actually 
positive and are correctly predicted as positive by the model.
False Positive (FP): The number of instances that are actually 
negative but are incorrectly predicted as positive by the 
model. This is also known as a type I error.
False Negative (FN): The number of instances that are 
actually positive but are incorrectly predicted as negative by 
the model. This is also known as a type II error.
True Negative (TN): The number of instances that are 
actually negative and are correctly predicted as negative by the 
model.

•

•

•

•



Here, beta is a non-negative parameter that determines the 
relative importance of precision and sensitivity in the score. A 
value of beta=1 gives equal weight to precision and sensitivity, 
while higher values of beta emphasize precision over sensitivity, 
and lower values of beta emphasize sensitivity over precision.

The F1 score is a special case of the F beta score where beta=1, 
and it gives equal weight to precision and sensitivity. The F1 
score is often used as a summary metric for binary classification 
problems, where there is an equal emphasis on correctly 
identifying both positive and negative cases.

The F beta score is a useful metric when both precision and 
sensitivity are important, and their relative importance can vary 
depending on the application. It is commonly used in fields 
such as medical diagnosis, where both false positives and false 
negatives can have serious consequences.

Cross-entropy loss: In binary classification problems, where we 
are trying to predict whether a data point belongs to one of two 
possible classes, the cross-entropy loss (also called log loss) is a 
commonly used loss function to measure the difference between 
the predicted probabilities and the actual binary labels. Fitting a 
model to perform binary classification, the loss function is a 
binary cross-entropy/log loss defined as:

while when the predicted probability is far from the true label, 
the loss is large.

The cross-entropy loss is a commonly used loss function in 
machine learning, especially for binary classification tasks. It has 
several desirable properties, including being a smooth, 
differentiable function that can be optimized efficiently using 
gradient based methods.

miRNAs targeting key signature genes

MIENTURNET, an interactive web application was used for 
microRNA target enrichment analysis, to screen for miRNAs 
that are potentially involved in regulating key signature genes. 
MIENTURNET uses the TargetScan program for sequence 
based miRNA target predictions, and achieved significant 
functional enrichment of predicted miRNAs using the software.

After identifying the miRNAs potentially involved in regulating 
key signature genes using MIENTURNET, we used cytoscape 
3.6.1 to establish a network of interactions between key 
signature genes and the identified miRNAs.

In addition to visualizing the interactions between key signature 
genes and miRNAs, we also conducted a functional enrichment 
analysis of the target genes, which involved identifying the 
biological processes, molecular functions, and cellular 
components that were most enriched among the target genes. 
This analysis can provide insights into the biological pathways 
that may be involved in the disease process and can help to 
identify potential drug targets.

Overall, the combination of MIENTURNET and cytoscape 
allowed identifying potential regulatory relationships between 
miRNAs and key signature genes, providing a more detailed 
understanding of the mechanisms involved in the disease 
process. The functional enrichment analysis of target genes also 
provided insights into potential drug targets.

Drug gene interaction analysis

To predict potential drugs for treating leishmaniasis, we used the 
DGIdb web tool. DGIdb is a database of drug-gene interactions 
and druggable genes that provides information on which drugs 
may be effective in treating specific diseases based on their 
interactions with genes involved in the disease process.

Using the DGIdb web tool, we likely queried the database with 
genes known to be involved in leishmaniasis and looked for 
drugs that interact with those genes. This approach can help to 
identify potential drugs that may be effective in treating the 
disease by targeting specific pathways or mechanisms involved in 
the disease process.

The use of computational approaches such as this can help to 
accelerate the drug discovery process by identifying potential 
drug candidates that can be further tested in preclinical and 
clinical studies. Overall, the use of the DGIdb web tool provides 
a valuable resource for identifying potential drug candidates for 
a wide range of diseases, including leishmaniasis.
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Precision is calculated as the number of true positive cases 
divided by the sum of true positive cases and false positive cases, 
and it is usually expressed as a percentage. Mathematically, it can 
be represented as:

Precision=(True positive/(True positive+False positive)) × 100%

A high precision value indicates that the model or test is making 
accurate positive predictions, while a low precision value 
indicates that many of the positive predictions made by the 
model or test are incorrect. Precision is an important 
performance metric in applications where accurate positive 
predictions are critical, such as medical diagnosis, fraud 
detection, and spam filtering.

F-beta: The F-beta score is a performance metric that combines
both precision and sensitivity by taking their harmonic mean.
The contribution of each metric to the score depends on the
value of the beta parameter, which determines the relative
weighting of precision and sensitivity.

The F beta score is calculated as:

Where;

y and p(y) is the label and predicted probability of the point 
being positive class (correctly classified) for all N points.

In other words, the cross-entropy loss measures how well the 
predicted probabilities match the true binary labels. When the 
predicted probability is close to the true label, the loss is small,
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helped to identify any potential issues that needed to be
addressed.

Our samples' density and heat map plots revealed that they were 
of good quality. We eliminated any genes with zero variance, 
keeping just the useful genes during differential expression. The 
Bioconductor package limma in R was used to perform 
differentially expressed gene analysis for all combinations of 
sample condition data. Genes with an F.D.R. p-value of less 
than 0.05 corrected for multiple testing using the B.H. 
technique were considered significant, and genes not 
differentially expressed in any sample conditions were filtered 
out. We found 3,646 genes that were expressed in the GSE 
125993 dataset.

Construction of weighted co-expression gene
network

We used the average linkage and Pearson's correlation methods 
to cluster the GSE 125993 samples in Figure 3A. To achieve a 
scale-free network, 12 (scale-free) powers were chosen as the soft-
thresholding parameter in this investigation Figure 3B.

Our samples' density and heat map plots revealed that they were 
of good quality. We eliminated any genes with zero variance, 
keeping just the useful genes during differential expression. The 
Bioconductor package limma in R was used to perform 
differentially expressed gene analysis for all combinations of 
sample condition data. Genes with an F.D.R. p-value of less 
than 0.05 corrected for multiple testing using the B.H. 
technique were considered significant, and genes not 
differentially expressed in any sample conditions were filtered 
out. We found 3,646 genes that were expressed in the GSE 
125993 dataset (Figure 3).
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RESULTS
We performed statistical data analysis and co-expressed gene 
network analysis to identify potential key signature genes. 
Statistical data analysis is a common approach in bioinformatics 
that involves applying statistical methods to high-throughput 
data, such as microarray or RNA-sequencing data, to identify 
genes that are differentially expressed between different samples 
or conditions. Co-expressed gene network analysis involves 
identifying groups of genes that are co-expressed or functionally 
related based on their expression patterns across different 
samples or conditions.

To interpret the biological significance of the differentially 
expressed module and repurposing drugs, we used gene 
ontology analysis and drug-gene interaction analysis. Gene 
ontology analysis involves using computational methods to 
identify the biological processes, molecular functions, and 
cellular components that are enriched among the differentially 
expressed genes. This can help to provide insights into the 
underlying biological pathways that are involved in the disease 
process.

Drug-gene interaction analysis involves identifying drugs that 
interact with the differentially expressed genes and exploring 
their potential as drug candidates for treating the disease. This 
approach can help to identify new uses for existing drugs or to 
identify potential drug targets for future drug discovery efforts.

Overall, the combination of statistical data analysis, co-expressed 
gene network analysis, gene ontology analysis, and drug-gene 
interaction analysis allowed the authors to identify potential key 
signature genes, interpret their biological significance and re-
purposing drugs in the context of leishmaniasis.

We performed statistical data analysis and co-expressed gene 
network analysis to enumerate potential key signature genes. 
Gene ontology and drug-gene interaction was done to interpret 
the biological significance of differentially expressed module and 
re-purposing drugs.

Data preprocessing and differentially expressed gene
analysis

There are 21060 probes I.D.s and 84 samples in the GSE 
125993 series microarray dataset. We eliminated probe IDs with 
incomplete expression data records. This is a common pre-
processing step in microarray data analysis, as it helps to remove 
probes that are not informative or may produce unreliable 
results. The density and heatmap plots of the samples were 
created, which are presented in Figure 2. Density plots provide a 
visualization of the distribution of expression values for each 
sample, while heatmap plots provide a visualization of the 
overall patterns of expression across all samples. These plots can 
help to identify any outliers or patterns in the data that may 
need to be addressed during further analysis.

Overall, the initial data processing steps taken with the GSE 
125993 microarray dataset helped to ensure that the data was of 
high quality and suitable for further analysis. The density and 
heatmap plots provided a useful visualization of the data and
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Figure 2: Density and correlation heatmap plot. (A) 
Density plot of microarray sample GSE125993 (B) 
Correlation heatmap of samples.



The findings indicate that the co-expression network is a scale-
free network, which is a common property of biological 
networks. This means that the distribution of connections (or 
degree) of the nodes follows a power law distribution, where a 
few nodes have a large number of connections (hubs) and most 
nodes have only a few connections. The use of weighting 
coefficients allowed for the generation of an adjacency matrix 
and Topological Overlap Measure (TOM), which helps to 
identify densely interconnected modules of genes.

Hierarchical clustering analysis of the genes was performed 
using node differences (1-TOM), which is a measure of 
dissimilarity between genes based on their connectivity in the 
network. This analysis helps to group together genes that have 
similar patterns of expression and connectivity in the co-
expression network. The results of this analysis were presented 
in Figure 4.

Figure 4: Hierarchical clustering genes. (A) Gene clustering 
on TOM-based dissimilarity (B) Network heatmap plot of 
selected genes, (C) Eigengenes Adjacency heatmap.

Overall, the analysis of the co-expression network helped to 
identify modules of genes that are co-expressed and potentially 
involved in similar biological processes. The use of weighting 
coefficients and the TOM helped to improve the accuracy of 
this analysis and increase the resolution of the identified 
modules.

The clustering analysis of gene expression data identified a total 
of 18 modules, each containing a group of genes that are highly 
co-expressed. To identify modules that are functionally related, a 
correlation analysis was performed between different modules. 
This analysis revealed that some modules are highly correlated 
with each other, indicating that they may be involved in similar 
biological processes.

To merge highly correlated modules, a dynamic branch-cut tree 
method was used, which is a widely used method for module 
detection in co-expression networks. The method starts by 
treating each module as a separate tree and iteratively merges 
pairs of trees with the highest similarity based on their 
Topological Overlap Measure (TOM). The merging threshold 
value determines the level of similarity required for two trees to 
be merged into a single module.

In this study, a merging threshold value of 0.30 was used, 
resulting in the merging of 18 modules into 5 modules. The 
results of this analysis were presented in Figure 5, which shows 
the five final modules and the genes that belong to each 
module. This approach helped to identify a smaller number of 
modules that are more functionally related, making it easier to 
interpret the biological significance of the identified modules.

Identification and enrichment analysis of modules

We calculated the Pearson correlation coefficient between 
leishmaniasis and M.E. to analyze the relationship between gene 
modules of leishmaniasis disease (Table 1).

Verma RN, et al.
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Figure 3: Sample clustering and scale-free network 
threshold. (A) Cluster dendrogram to detect outliers, (B) 
Scale-free independence and mean connectivity graph, (C) 
Histogram of nodes K and check scale-free topology.

Figure 5: (A) Clustering dendrogram (B) Dynamic cut tree, 
and (C) Merged modules.



|Cor_ADR| 0.29486 0.42101 0.3305 0.19686 0.30656

p-value 0.006474 6.67E-05 0.002137 0.072682 0.004565

Module significance 0.215953 0.32308 0.24895 0.165099 0.17063

Note: *Cor_ADR=Pearson correlation coefficient

According to module significance, p-value, and Pearson
correlation coefficient, MElightcyan became our module of
interest (Table 1). The differentially expressed gene co-expression
network module's putative biological activities were investigated
using G.O. enrichment analysis. We did a Gene Ontology
(G.O.) enrichment analysis of signature genes, and the results
are pictorially shown in Figures 6 and 7.

phosphatidic acid transporter activity, U1 snRNP binding,
NADH dehydrogenase (ubiquinone) activity, 4-iron, 4-sulfur
cluster binding, Hsp70 protein binding, macromolecular
complex binding, and structural constituent of ribosome.

The enriched GO KEGG were protein export, proteasome,
valine, leucine, and isoleucine degradation, cardiac muscle
contraction, spinocerebellar ataxia, spliceosome, protein
processing in endoplasmic reticulum, coronavirus disease-
COVID-19, non-alcoholic fatty liver disease, and oxidative
phosphorylation as shown in Figure 7.

Identification of key signature genes in key module
and pathway analysis

A key signature gene in a module usually has a high gene 
significance, module membership value, and module 
interconnectivity. Therefore, we first selected genes with 
G.S.>0.45 and MM >0.75. These conditions were satisfied by six
genes, namely, SC5D, LSM1, IFNG, CMC2, SAR1B, and
C5orf15, as Key Signature Genes (KSGs) of leishmaniasis.
Finally, we selected the top 5 genes, SC5D, LSM1, IFNG, CMC2,
and SAR1B, with the largest interamodular connectivity, as the
signature genes. We explored the functional association between
key signature genes of leishmaniasis by performing gene
ontology and KEGG pathway enrichment analysis. The IFNG
(interferon-gamma) was enriched in cytokine-cytokine receptor
interaction, HIF-1 signaling pathway, necroptosis, TGF-beta
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The enriched G.O. biological processes were positive regulation of 
ER-associated ubiquitin-dependent protein catabolic process, 
histone mRNA catabolic process, tetrahydrofolate 
interconversion, optic nerve development, negative regulation of 
insulin secretion involved in the cellular response to glucose 
stimulus, endonucleolytic cleavage in ITS1 to separate SSU-rRNA 
from 5.8S rRNA and LSU-rRNA from tricistronic rRNA 
transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA), cotranslational 
protein targeting to membrane, golgi ribbon formation, 7-
methylguanosine cap hypermethylation, and vesicle organization. 
Enriched G.O. cellular processes were the Lsm1-7-Pat1 complex, 
pICln-Sm protein complex, spliceosomal tri-snRNP complex, 
transcription export complex, proteasome core complex, alpha-
subunit complex, mitochondrial proton-transporting ATP 
synthase complex, coupling factor F(o), methylosome, U4 snRNP, 
small nuclear ribonucleoprotein complex, and mitochondrial 
proton-transporting ATP synthase complex. The molecular process 
was enriched in methylenetetrahydrofolate dehydrogenase (NAD+) 
activity, Metheny tetrahydrofolate cyclohydrolase activity, 
methylenetetrahydrofolate     dehydrogenase    (NADP+)     activity,
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Table 1: Pearson correlation between each module and leishmaniasis.

Figure 6: Gene ontology analysis-biological process and 
molecular functions.

Figure 7: Gene ontology analysis-cellular components and 
kegg pathways.



Regularization parameter, which is the penalty parameter that
represents misclassification C=1000; and gamma=0.01 were
estimated as the best parameters. Using these best estimated
parameters, SVM classified 0.859%~86% accurately with 5-fold
Cross-validation (Cv) on the training set and 0.82%~82%
accuracy on the test set (Figure 8C). Evaluation metrics
associated with confusion matrix are as follows (Figure 8D):

Our classification model with labels (0,1) gives accuracy of
(0.859,0.823) on training and test sets, respectively. Support
vector machine classification model with labels (0,1) gives
sensitivity of (0.72,0.94). The precision of the support vector
machine classification model with labels (0,1) is (0.93,0.71). Our
classification model with labels (0,1) gives f1-score of (0.81,0.83).

ROC-AUC: The ROC-AUC score is a commonly used metric
for evaluating the performance of a classifier, especially in binary
classification problems. It measures the ability of the model to
distinguish between positive and negative samples. An ROC-
AUC score of 0.5 represents a random classifier, while a score of
1.0 represents a perfect classifier. The closer the ROC-AUC
score is to 1, the better the classifier performance. It is an
important metric for evaluating the performance of a classifier,
particularly in cases where the class distribution is imbalanced.

In this case, the ROC-AUC score of 0.91 indicates that the
support vector machine classifier model performed very well in
distinguishing between the genes related to leishmaniasis and
those that are not. Therefore, it can be concluded that the
classifier has a high degree of accuracy and reliability (Figure 8).

A cross-entropy or log loss value approaching zero indicates that 
the predicted probabilities of the model are close to the true
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signaling pathway, osteoclast differentiation, antigen processing 
and presentation, JAK-STAT signaling pathway, natural 
killer cell mediated cytotoxicity, IL-17 signaling pathway, 
"Th1, and Th2 cell differentiation", "Th17 cell 
differentiation", "T cell receptor signaling pathway", type 
I diabetes mellitus, leishmaniasis, Chagas disease, African 
trypanosomiasis, malaria, toxoplasmosis, amoebiasis, 
tuberculosis, hepatitis C, influenza A, herpes simplex virus 1 
infection, pathways in cancer, PD-L1 expression and PD-1 
checkpoint pathway in cancer, inflammatory bowel 
disease, "systemic lupus erythematosus", rheumatoid arthritis, 
allograft rejection, graft-versus-host disease, fluid shear stress, 
and atherosclerosis. Gene LSM1 (LSM1 homolog, mRNA 
degradation associated) enriched in RNA degradation. Gene 
SC5D (Sterol-C5-Desaturase) is involved in steroid 
biosynthesis and metabolic pathways. Gene SAR1B 
(secretion associated Ras related GTPase 1B) 
functional enriched in protein processing in endoplasmic 
reticulum, legionellosis. There have been many reports of the 
essential roles of cytokine in responding to leishmaniasis during 
the activation of the disease.

Feature creation using variational autoencoder

Variational autoencoder is a class of deep learning neural 
network architecture that belongs to generative models. 
In neural network architecture, a variational autoencoder 
consists of an encoder, a decoder, and a loss function. The 
encoder transforms input data into latent space, and the 
decoder reconstructs data given the hidden 
representation. An autoencoder is neural network 
architecture whose inputs are high-dimensional data points 
that convert them into a low dimensional latent vector and 
further reconstruct the original input sample by utilizing 
latent vector representation without losing valuable 
information (Figures 8A and 8B). Variational autoencoders 
can be defined as auto-encoders whose training is tuned to 
avoid overfitting, and the latent space has suitable 
properties that enable the generative process. We created 
a variational auto-encoder deep neural network with input 
as differentially expressed gene sets. The network was trained 
with 3646 genes as input at the input layer, 584 and 
100 as intermediate layers, and 15 as latent dimensions. 
Optimized hyperparameters by parameterization trick with a 
batch size of 20, learning rate as 0.0005, the test data size of 35, 
epochs as 50, fold count as 10, and sigmoid activation function 
was used. We created new features of the gene expression data 
set to reduce the dimensionality of gene expression data and 
converted this gene expression data into a 15 dimensional 
representation to minimize dimensionality.

Validation of the key signature genes with a
classification algorithm

We investigated the validity of the identified key signature genes 
with the help of Support Vector Machine classification (SVM). 
We selected the best parameters for the S.V.C. model using the 
grid search method. Radial Basis Function (RBF) kernel with
width σ,
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Figure 8: V.A.E. model and classification. (A) VAE model 
loss (B) VAE model reconstruction error (C) ROC-AUC 
curve for classifier performance (D) Confusion matrix 
values to summarize the performance of the classification 
algorithm.



MIENTURNET. Five key signature genes (SC5D, LSM1, IFNG, 
CMC2, and SAR1B) interact most with miRNAs enlisted in 
Table 2.

S. no. miRNA family p-value F.D.R. Target gene

1 hsa-miR-340-5p 0.059106 0.373919 IFNG, SAR1B

2 hsa-miR-325-3p 0.020637 0.373919 SC5D, SAR1B, CMC2

3 hsa-miR-182-5p 0.054174 0.373919 SAR1B, SC5D

4 hsa-miR-1271-5p/hsa-miR-96-5p 0.044298 0.373919 SAR1B, SC5D

We have found 04 significant miRNAs targeted with key 
signature genes, including hsa-miR-340-5p, hsa-miR-325-3p, hsa-
miR-182-5p, hsa-miR-1271-5p/hsa-miR-96-5p. Investigating 
the 04 miRNAs identified with biomarkers in visceral 
leishmaniasis infection was significantly associated with p<0.05. 
miRNAs hsa-miR-340-5p targeted with two key signature 
genes (IFNG, SAR1B), hsa-miR-325-3p targeted with three key 
signature genes (SC5D, SAR1B, CMC2), hsa-miR-182-5p 
targeted with genes SAR1B and SC5D, hsa-miR-1271-5p/hsa-
miR-96-5p targeted with genes SAR1B and SC5D.

Gene-drug interaction analysis

We identified approved drugs from DGIdb database. We get 
FDA approved anti-inflammatory agents Emapalumab and 
Methylprednisolone as a re-proposed drug for leishmaniasis 
cure. Using the "Gene and Drug Landing Page Aggregator 
(GDLPA)" web tool, we identified gene-drug interactions as 
listed in Table 3.

S. no. Gene Drugs

1 SC5D Lanosterol, tretinoin, simvastatin, isopentenyl 
pyrophosphate, mevalonic-acid, fluconazole, 
lovastatin, isoflurane, tromethamine, putrescine

2 LSM1

3 IFNG

4 CMC2

5 SAR1B Vitamin E, hydroxyurea, paclitaxel, 
tromethamine, nocodazole, nifedipine, 
oxymetazoline, glutaral, morpholine, gamma-
tocopherol    

outbreaks are increasingly recognized. In this study, we re-
analyzed whole blood transcriptomic data to identify
differentially expressed genes. Further, co-expression gene
interaction networks were constructed for differentially
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probabilities. Therefore, a value of 0.3 and 0.2 for the test and 
training datasets, respectively, suggests that the binary 
classification model is performing well and accurately predicting 
the classes.

miRNAs targeting key signature genes infected by
visceral leishmaniasis
We extracted the targets of key signature genes-miRNAs using 

DISCUSSION
Despite remarkable progress toward eliminating V.L. as a public 
health problem in India, transmission continues, and V.L.
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Table 2: Mienturnet enrichment results from TargetScan.

Table 3: Gene-drug interactions.

Racemethionine, tromethamine, uridine, 
fluorouracil, gemcitabine, biotin, 
ampicillin, tretinoin, imidazole, thiamine

Hydrocortisone, tretinoin, prednisolone, 
prednis one, tromethamine, isoniazid, aspirin, 
d-threo-neopterin, biotin, methylprednisolone

Fluorouracil, tromethamine, letrozole, 
pidorubicine, ampicillin, dexamethasone, 
zidovudine, cetrim onium, capric acid, stearic 
acid



mitochondrial proton-transporting ATP synthase complex, small 
nuclear ribonucleoprotein complex. The molecular process was 
enriched in methylenetetrahydrofolate dehydrogenase (NAD+) 
activity, metheny tetrahydrofolate cyclohydrolase activity, 
methylenetetrahydrofolate dehydrogenase (NADP+) activity, 
NADH dehydrogenase (ubiquinone) activity, 4 sulfur cluster 
binding, Hsp70 protein binding, macromolecular complex 
binding, structural constituent of ribosome, and phosphatidic 
acid transporter activity.

Next, we selected the top 5 genes namely SC5D, LSM1, IFNG, 
CMC2, and SAR1B with high module interconnectivity, module 
membership value, and gene significance. As Key Signature 
Genes (KSGs) of leishmaniasis. The IFNG (interferon-gamma) 
was enriched in 'cytokine-cytokine receptor interaction', 'IL-17 
signaling pathway', 'Necroptosis', 'TGF-beta signaling pathway', 
'osteoclast differentiation', ‘antigen processing and presentation’, 
‘JAK-STAT signaling pathway’, ‘natural killer cell mediated 
cytotoxicity’,‘T-cell receptor signaling pathway’, ‘inflammatory 
bowel disease’, ‘HIF-1 signaling pathway’, ‘systemic lupus 
erythematosus’, and ‘atherosclerosis’. Gene LSM1 (LSM1 
homolog, mRNA degradation associated) enriched in RNA 
degradation. Gene SC5D (Sterol-C5-Desaturase) is involved 
in steroid biosynthesis and metabolic pathways. Gene 
SAR1B (secretion associated Ras related GTPase 1B) 
functional enriched in protein processing in endoplasmic 
reticulum, legionellosis. There have been many reports of the 
essential roles of cytokine in responding to leishmaniasis during 
the activation of the disease.

A variational auto-encoder deep neural network with input as 
differentially expressed gene sets was trained with optimized 
hyperparameters by parameterization trick, created new features 
of the gene expression data set, and converted this gene 
expression data into a 15-dimensional representation to 
minimize dimensionality. Investigating the validity of the 
identified key signature genes with the help of a support vector 
machine with best-estimated parameters, SVM classified 
0.859%~86% accurately with 5-fold Cross-Validation (CV) on 
the training set and 0.82%~82% accuracy on the test set. 
Further, confusion matrix values summarize the performance of 
this classification algorithm.

Resulted classification model with labels (0,1) gives accuracy of 
(0.859,0.823) on training and test sets, respectively. SVM 
classification model with labels (0,1) gives sensitivity of 
(0.72,0.94), precision of (0.93,0.71). And f1-score of (0.81,0.83). 
The ROC-AUC of our support vector machine classifier model 
is 0.92, which approaches 1. So, it concluded that the classifier 
did well in classifying the genes. Cross-entropy loss computed 
binary cross-entropy/log loss as 0.3 and 0.2 for test and training 
data sets, respectively, and approaches to zero. Thus, the binary 
classification model is significantly good.

Targets of key signature genes-miRNAs found 04 significant 
miRNAs targeted with key signature genes, including hsa-
miR-340-5p, hsa-miR-325-3p, hsa-miR-182-5p, hsa-miR-1271-5p/
hsa-miR-96-5p. Investigating the 04 miRNAs identified with 
biomarkers in visceral leishmaniasis infection was significantly 
associated with p<0.05. miRNAs hsa-miR-340-5p targeted with 
two key signature genes (IFNG, SAR1B), hsa-miR-325-3p  targeted
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expressed genes. Next, co-expression network was decomposed 
in modules. Analyzing desiese specific module, key signature 
genes are identified. Additionally, key signature genes were 
validated among differentially expressed genes. Transcriptomic 
data are large dimensional in terms of genes, so there was a need 
to create new features. A variation of generative adversarial 
network namely variational autoencoder was applied to create 
new features of differentially expressed genes. A new dataset was 
created with the key signature genes and 15 dimentional data of 
differential expressed genes. Thereafter, supervised machine 
learning method-support vector machine was applied to classify 
disease and control cases samples. Thus, a two-step approach was 
applied to study whole blood transcriptomic data to identify key 
signature genes.

Protein-protein/gene-gene interactions have been studied from 
different perspectives such as biochemistry, quantum chemistry, 
molecular dynamics, signal transduction, and among others. All 
this information enables the creation of large protein interaction 
networks similar to metabolic or genetic/epigenetic networks 
that empower the current knowledge on biochemical cascades 
and molecular etiology of disease, as well as the discovery of 
putative protein targets of therapeutic interest. Insufficient 
adjacency matrix measures interconnectedness in a network. 
Still, another approach is the topological overlap matrix 
(shared), which gives more meaning the WGCNA co-expression 
network analysis method is used in systems biology to identify 
disease genes, pathways, and key regulators.

The leishmaniasis disease microarray dataset GSE125993 was 
analyzed in this study, and a weighted gene co-expression 
network was constructed with differentially expressed gene sets. 
Probe ids of 21060 were annotated with respective gene symbols. 
Preprocessing the microarray data by making density and heat 
plots, and eliminating genes with zero variance, good quality 
data was retained. Limma statistical package with an F.D.R. p-
value less than 0.05 as the cutoff was applied to identify 3646 
differentially expressed genes. These differentially expressed 
genes were used to construct a weighted gene co-expression 
network using Pearson's correlation method. The average 
linkage method with hierarchical clustering clustered the 
differentially expressed genes into five modules. Module's 
interconnected analysis reveals that the module MElightcyan 
was more significant than other modules.

Furthermore, the KEGG pathway and gene ontology analysis of 
module MElightcyan identified the potential function of the 
genes in the module. This revealed that these genes were 
clustered in many pathways, with emphasis on protein 
processing in endoplasmic reticulum, metabolic pathways, 
amyotrophic lateral sclerosis, valine, leucine and isoleucine 
degradation, protein export, etc. The enriched biological 
processes were co-translational protein targeting to membrane, 
golgi ribbon formation, 7-methylguanosine cap hyper 
methylation, vesicle organization and positive regulation of ER-
associated ubiquitin dependent protein catabolic process, 
tetrahydrofolate interconversion. Enriched cellular processes 
were the mitochondrial proton-transporting ATP synthase 
complex Lsm1-7-Pat1 complex, spliceosomal tri-snRNP complex, 
transcription export complex, proteasome core complex,
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with three key signature genes (SC5D, SAR1B, CMC2), 
hsa-miR-182-5p targeted with genes SAR1B and SC5D, 
hsa-miR-1271-5p/hsa-miR-96-5p targeted with genes SAR1B 
and SC5D.

Further, text-mining of gene-drug interaction revealed FDA approved 
anti-inflammatory agents emapalumab and methylprednisolone as a 
re-proposed drug for leishmaniasis cure. Using the web tool, we 
identified gene-drug interactions. These drugs need further 
experimental validation for their possible use in leishmaniasis 
treatment. This study is based on leishmaniasis gene expression 
analysis. Furthermore, we need wet-lab studies to interpret and 
validate the functionality. 

CONCLUSION
In this study, we aimed to detect key signature genes and 
pathways implicated in active visceral leishmaniasis. We have 
five genes IFNG, SC5D, LSM1, CMC2, and SAR1B, with higher 
interamodular connectivity, as the key signature genes. These 
genes were validated using a machine learning algorithm by 
creating new gene features by applying a variational 
autoencoder. These genes are involved in processes like cytokine-
cytokine receptor interaction, IL-17 signaling pathway, T-cell 
receptor signaling pathway, and Th1 and Th2 cell 
differentiation. Besides, hsa-miR-340-5p, hsa-miR-325-3p, hsa-
miR-182-5p, hsa-miR-1271-5p/hsa-miR-96-5p miRNAs were 
found to target key signature genes. Further, candidate drugs 
were identified by gene-drug interaction. The emapalumab and 
methylprednisolone were identified as re-purposed drugs for 
leishmaniasis cure. The results of this study may give insight into 
the understanding of the molecular pathogenesis of visceral 
leishmaniasis infection.

LIMITATION OF STUDY
However, this study used an integrated experimental and 
computational methodology for transcriptomic analysis. 
Incorporating multiple experimental and computational 
approaches can help gain a more comprehensive understanding 
of the disease and identify novel targets for drug development. 
lncRNA analysis is missing. lncRNAs have importance in 
controlling intestinal epithelial cell death, increasing 
inflammation. It is a valid point that lncRNAs play an essential 
role in many biological processes, and their potential role in 
disease pathogenesis cannot be ignored. lncRNAs are linked to 
the pathogenesis of a variety of disorders. Therefore, Future 
studies could focus on the role of lncRNAs in the context of the 
disease being studied. Additionally, studying host-pathogen 
protein-protein interactions could provide more insight into the 
disease mechanism and identify potential therapeutic targets.
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