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The individual response to therapeutic treatments is likely to be 
a complex trait that is controlled by various genetic and non-genetic 
factors. In an ideal world of personalized medicine, the information 
about a patient’s genetic make-up or gene expression profile would 
be considered by physicians together with other clinical information 
(e.g., age, gender) to tailor medical care for both maximizing effective 
therapy and avoiding adverse effects. The challenge for personalized 
medicine is particularly urgent for cancer chemotherapy. Clinically, 
anticancer drugs often present a narrow therapeutic index, indicating 
that small changes in dosage could cause severe toxic response (e.g., 
neurotoxicity and nephrotoxicity) [1,2] with the extreme end of 
complication resulting in fatality. Therefore, understanding the 
comprehensive relationships between genetic/non-genetic factors and 
drug response is a critical step toward the realization of personalized 
medical care in clinical oncology. 

During the past decade, high-throughput technological platforms 
have become available for comprehensively and quantitatively 
profiling genetic variation and molecular targets in cells. For example, 
the advances in microarray (e.g., the Affymetrix GeneChip and the 
Illumina BeadChip platforms) and RNA-sequencing (e.g., the Illumina 
Genome Analyzer) technologies have allowed the profiling of the 
entire transcriptome (i.e., mRNA-level expression) of cells including 
both common and rare transcripts, as well as transcript variants (i.e., 
transcript isoforms). For genetic variation, large research efforts such as 
the International HapMap Project [3,4] and the 1000 Genomes Project 
[5] have made publicly available a detailed map of human genetic 
variation across major populations including Asians, Europeans 
and Africans. Taking advantage of these technological and research 
advances, cell-based pharmacogenomic studies have begun to identify 
genetic determinants that are responsible for drug response [6,7]. 

Particularly, the model using the lymphoblastoid cell lines (LCLs) 
from the HapMap Project [3,4] samples has proved to have significant 
advantages (both scientific and ethical) in pharmacogenomic discovery 
[6,7]. Compared with the traditional candidate gene approaches, 
pharmacogenomic studies using the resources of the HapMap samples 
(e.g., genotypes of >4 million singe nucleotide polymorphisms [SNPs], 
copy number variants [CNVs], and whole-genome gene expression 
profiles) [8] could comprehensively investigate the relationships 
between, for example, genetic variation and drug response, as well 
as gene expression and drug response, at the genome-wide level. 
For example, by integrating the whole-genome gene expression data 
(~9,000 expressed genes generated by the Affymetrix Human Exon 
Array) [9,10] and the SNP genotypes from the HapMap Project [3,4],  
a number of genetic variants, acting through gene regulation (i.e., 
eQTLs: expression quantitative trait loci), have been identified to be 
associated with the cytoxicities to some anticancer drugs, including 
etoposide [11], daunorubicin [12], carboplatin [13], cisplatin [14] and 
Ara-C (cytarabine arabinoside) [15] in a panel of LCLs derived from 
individuals of African and European ancestry. Recently, using the 
LCL model, CNVs were also identified to predict cellular sensitivity 
to an array of chemotherapeutic agents of heterogeneous molecular 
therapeutic action (e.g., cisplatin, carboplatin, daunorubicin, etoposide) 

[16]. In addition, genome-wide meta-analysis using these resources 
facilitated the  identification of variants associated with platinating 
agent susceptibility across human populations [17].

The current progress in pharmacogenomic discovery demonstrates 
the promise of integrating what we have learned from these studies to 
construct a more comprehensive model that may predict individual 
response and toxicity to anticancer drugs. A systems biology 
approach that aims to integrate and analyze the complex datasets 
from a pharmacogenomic model such as the HapMap samples would 
ultimately allow researchers to assemble the puzzle of individualized 
drug response. A major breakthrough could be driven by the deeper 
understanding of gene regulation mechanisms. Since gene expression 
is a complex and quantitative trait that is regulated by various genetic 
and non-genetic factors, besides genetic variation (e.g., through 
eQTLs), other important epigenetic mechanisms (e.g., microRNAs, 
DNA methylation, and histone modifications) could also play critical 
roles in regulating gene expression, thus potentially affecting the 
downstream phenotypes of variation in drug response. We expect 
that the beginning of the availability of microRNA [18,19] and DNA 
methylation [20,21] profiles using high throughput technologies 
on these samples will help provide novel insights into both the 
general mechanisms of gene regulation and how the cells respond 
to therapeutic agents. For example, the availability of genome-wide 
DNA methylation profiles will allow us to evaluate the contribution 
of mQTLs (methylation quantitative trait loci) to the variation in drug 
response. Besides two-dimensional relationships between molecular 
target profiles and drug response, a systems biology approach will be 
necessary to evaluate the complex networks of gene-gene and gene-
environment interactions that may contribute to drug response as well. 
Furthermore, the recent development in technology has begun to allow 
high-throughput profiling of other dynamic components in cells (e.g., 
lipidome, glycome, metabolome, rare and transient transcripts). We 
expect that a systems biology approach to pharmacogenomic discovery 
will be able to integrate and analyze all of these complex datasets for 
the aim of elucidating the underpinning mechanisms of drug response 
in the future. In addition, the current pharmacogenomic resources 
(e.g., PharmGKB, PACdb) [22-24] will need to be integrated to provide 
much easier access to a variety of relevant datasets (e.g., drug response 
phenotypes, gene expression, and genetic variation data). A central 
portal for systems medicine may be our goal for this purpose of data 
integration.
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Though significant challenges remain to be dealt with (e.g., 
bioinformatic tools for analyzing and integrating data with increasing 
complexity and size), we are cautiously optimistic that the realization 
of personalized medicine in clinical oncology will be possible through 
a multi-disciplinary, systems biology approach to pharmacogenomic 
discovery. No doubt, Internal Medicine will be a high-quality venue 
for investigators and clinicians interested in using system biology 
approaches to personalized medicine. We look forward to sharing your 
research results, ideas and perspectives in this exciting field.
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