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Abstract

Conjugate Gradient Solver is a well-known iterative technique for solving sparse symmetric positive definite
(SPD) systems of linear equations. The aim of this paper is to optimize and parallelize the currently available
Conjugate Gradient Solver for OpenFOAM (Open source Field Operation and Manipulation) on GPU using CUDA
which stands for Compute Unified Device Architecture, is a parallel computing platform and application programming
interface (API) model created by NVIDIA. OpenFOAM is a C++ toolbox for development of customized numerical
solvers of continuum mechanics problems, including Computational Fluid Dynamics. Existing Conjugate Gradient
Solver can be optimized with the help of some techniques available for sparse matrix storage like Compressed
Sparse Vecto (CSV).

Keywords: Iterative methods; Convergence; Sparse and very large
systems; Linear systems; Parallel programming

Introduction
Conjugate Gradient method is the one of the most popular and well

known iterative techniques for solving systems of linear equation
which involves large sparse symmetric positive definite (SPD)
matrices. A sparse matrix is a matrix which involves primarily large
number of zero elements.

The general form of system of equation to solve is,

Ax = b

where, A is the symmetric positive definite matrix of order m ᵡ n

m is the number of rows

n is the number of columns

b is the n ᵡ 1 known right hand side vector.

x is the m ᵡ 1 solution vector which we want to calculate.

Need of parallelization
One relevant purpose of using parallelism is to obtain the desirable

reduction in the execution time, measured by the speedup metric. In
the parallel computing context it is calculated as the ratio between the
sequential execution time and the parallel execution time. Regarding
only the number of processing elements (PE) executing a parallel
program, it can be said the maximum speedup is equal to the number
of PEs (linear speedup).

Related Work
The solution of large sparse linear systems, which are mainly arisen

from the discretization of partial differential equations (PDEs), is an
important problem in scientific computing. Krylov subspace methods
such as Conjugate Gradient (CG) and Generalized Minimal Residual

(GMRES) gain popularity in solving this problem because they require
only matrix-vector products and a few vector operations per iteration,
thus can be easily implemented on high-performance computers. Yao
Chen et al suggested the two pre conditioners in order to accelerate
convergence which is Incomplete Cholesky and Symmetric successive
over-relaxation (SSOR)[1]. They also suggested level scheduling to
increase multi-thread parallelism of sparse triangular solve on GPU.
Level Scheduling splits the computation into two phases: an analysis
phase which groups unknowns into different levels so that all
unknowns of the same level can be determined simultaneously
followed by a solve phase which solves the triangular system level by
level. They analysed that the standard method of solving triangular
system is forward/backward substitution which is serial processing and
hard to parallelize on GPU.

Chevallier et al. [2] proved that the GPU speedup tends to increase
with the problem size. Due to GPU setup and communication times,
the speedup is greater than one typically for large problems[2]. From
their experiments it clearly appears that unit-test models do not follow
a simple relationship between speedup and the problem size, i.e.,
several values of speedup are found for a given value of the problem
size where alternator was considered for experiment. So they then
considered a rectangular rod for their experiment. Also they explained
about OpenCL as its a standard for parallel computing consisting of a
language (an extension of C), API, libraries and a runtime system.
OpenCL is based on a platform model that divides a system into one
host and one or several compute devices. Compute devices act as co-
processors (e.g. GPUs) to the host (e.g. CPU). An OpenCL application
is 1 executed in the host, which sends instructions, defined in special
functions called kernels, to the device. A single host can manage
multiple devices, even heterogeneous devices. OpenCL allows for
creating contexts and queues in order to manage tasks being launched
by the host in all attached devices.

Peixoto et al. [3] analyze the performance of the GPU using the
incomplete Cholesky (IC) CG method (ICCG) and incomplete LU
(ILU)preconditioned GMRES method [3].Viviane Cristine Silva
presents an ICCG implementation architectures using domain
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decomposition. They analysed two models where Model 1denotes the
solution of the linear system of real unknowns, which models the 3-D
elliptic problem, whereas Model 2stands for the solution of the
complex linear system issued from the time-harmonic [3].

Guiming Wu et al. proposed a high performance architecture of
Conjugate Gradient Solver on field programmable gate
arrays(FPGAs),which can handle symmetric positive define systems of
arbitrary size[4]. They suggested that we must partition sparse
matrices to fit in the limited internal RAM assume that sparse matrix
and vectors are stored in off-chip memory. It is different from some
previous work, where only the internal RAM is used to store the matrix
and vectors. In our design, a block of x is transferred to the internal
RAM before computing, and then a block of A is streamed into our
architecture to drive the computation. After all the blocks from the
same row are finished, a block of y will be obtained and stored back to
the off-chip memory.

et al.presents some obstacles to accelerate the preconditioned
conjugate gradient (PCG) method on modern graphic processing units
(GPUs) is presented and several techniques are proposed to enhance
its performance over previous work independent of the GPU
generation and the matrix sparsitypattern [5]. The proposed algorithm
outperforms previous methods on both platforms. Unlike previous
methods, which are not optimized for matrices with small number of
non-zeros per row, the proposed optimizations, independent of the
matrix sparsitypattern, are able to increaseconsiderably the
performance for such matrices.

One of the paper is based on the implementation of five different
algorithms on the GPU, and comparison of their performance with
those of a CPU. The GPU-based solver was approximately eight times
faster. Using CUDA, a 2D solver with multi-grid Full Approximation
Scheme (FAS) used to accelerate convergence of all flow variables (u, v,
and p). Steady-state calculations of driven cavity flow with 4096 x 4096
could be performed in a minute of GPU time [6,8].

Halfhill presented the real problem with parallel processing which is
too many solutions. Finding the best one for a particular application
isn’t easy [9]. Choosing a processor architecture is only the first step
and may be less important than the software-development tools, the
amount of special programming required.

Proposed Work
For solving linear equation systems having large sparse matrices, the

main time consuming part is matrix manipulation[7].This sparse
matrix manipulations can be made quicker by the use of different
sparse matrix storage formats such as

• Compressed Sparse Row format(CSR)

• Compressed Sparse Column format (CSC)

• Coordinate storage format(COO)

All of these techniques have some disadvantages [8]. To overcome
them, the new technique is proposed i.e. Compressed Sparse
Vector(CSV) which will be better if used than Compressed Sparse Row
(CSR) format. There are many advantages of CSV over CSR format
such as 1)Less Storage Volume, 2)Ease of Transpose Matrix

Calculation, 3) High Speed,4)Broad Range for Storage Sparse Matrices
[5].

Conclusion
This new method which we called it Compressed Sparse Vector

(CSV) format, for storage of coefficient matrix A of linear system , has
been based on row counting indexing, in CSV method, growing rate of
indices values has been controlled by restarting indices after passing
each non-zero element. Storage compaction in this new method will be
better than other methods. Also, calculating of transpose of matrix A is
very simple without any computation cost. Furthermore, we can
conclude that application of CSV method for representing sparse
matrices will not only reduce the storage volume of the compressed
matrix, but also it increases the speed of the computers in practice.
Also, using this method is suitable for dense sparse matrices, therefore,
a broad range of sparse matrices could be compressed. Thus, since
memory is an issue, the method’s low storage requirements provide a
means to tackle very large problems which would otherwise be out of
reach.
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