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Introduction
The peptide growth factor gastrin and its receptor, the G-protein 

coupled cholecystokinin receptor type B (CCKBR), play an integral role 
in the growth and progression of pancreatic ductal adenocarcinoma 
(PDAC) [1-4]. Gastrin immunoreactivity is found in the fetal pancreas 
but its expression is not detected in normal pancreas after birth, 
except when it is re-expressed in malignant lesions [5-8]. Although 
gastrin is involved physiologically in secretion of gastric acid and 
growth of the gastrointestinal tract epithelium, it is also an important 
growth factor for cancers of the pancreas, colon, stomach, and lung, 
where it stimulates cell growth by an autocrine mechanism [5,7,9-
11].  Growth of human PDAC cells in culture or in nude mice can 
be stimulated by the exogenous addition of gastrin.  Blockade of the 
CCKBR with antagonists, or reduction of gastrinor CCKBR in cancer 
cells, has been shown to inhibit tumor formation and metastasis, and to 
promote apoptosis [5,12,13]. However, evidence is also accumulating 
for paracrine growth effects of gastrin, where for example blockade 
of CCKBR signaling has been shown to reduce tumor fibrosis and 
inflammation. CCKBRs have also been identified on cells in the tumor 
microenvironment, opening the possibility that gastrin signaling in the 
stromal compartment could have importance in tumor progression 
and/or dissemination [5,12,14,15]. Here we review the literature 
on the effects of gastrin:CCKBR signaling on various processes in 
stroma, and develop the idea that pancreatic stellate cells (PSCs) and 
tumor infiltrating macrophages (TIMs) may be important players in 
mediating such effects.

Pleiotropic effects of gastrin and CCKBR  receptors on 
processes involved in tumor invasion 

Tumor cell adhesion and migration: Gastrin, acting through 
the CCKBR, is associated with altered expression of several cell-cell 
or cell-matrix adhesion molecules [16-18]. In the intestinal epithelial 
cell line IEC6, gastrin induced a loss of cell-cell adhesion that was 
mediated by JAK2/PI3K signaling [16]. Activation of JAK2 lead to 
STAT3 phosphorylation and altered subcellular localization of α- and 
β- catenins and E-cadherin, with consequent disruption of adherens 
junctions. In human PANC-1 cells, CCKBR activation by gastrin 
increased β1 integrin expression at the RNA and protein level and 
induced tyrosine phosphorylation of β1 integrin through Src and PI3K 
signaling [17]. The phosphorylation of β1 integrin enhanced adhesion 
of the cells to fibronectin and laminin. Similarly, gastrin induced a 
5-fold increase in βv integrin  expression and increased fibronectin

adhesion of PANC-1 cells that was βv integrin-mediated [18]. The 
authors suggested that the gastrin-induced increases in both β1 and 
βv integrin subunits contribute to alterations in cell-cell adhesion, 
migration and metastasis [19]. Human gastric cancer cells (AGS) 
stably over-expressing CCKBR responded to gastrin stimulation with 
increased MMP-9 secretion and enhanced Matrigel invasion [20].

Stable expression of CCKBR in kidney epithelial (MDCK) cells 
resulted in a gastrin-mediated increase in cell dissociation, epithelial-
to-mesenchymal transition (EMT)- like morphological changes, and 
increased cell motility and invasion through collagen matrices [21]. 
The role of the CCKBR in cell motility has been further supported 
by a recent study in PANC-1 cells, where a scratch-wound assay 
demonstrated that migration was decreased in PANC-1 clones with 
stably reduced expression of CCKBR [22]. 

Conversely, several naturally occurring variants of the CCKBR 
have been identified which possess increased receptor re-sensitization 
and activity.  When these more active CCKBR variants were expressed 
in human embryonic kidney (HEK293) cells they stimulated cell 
migration on collagen-coated plates [23]. Analogously, murine 
fibroblast (NIH 3T3) clones that over-express a constitutively active 
CCKBR variant also demonstrated increased invasiveness through 
Matrigel [24]. In vitro invasiveness of both wild-type and variant 
receptors was enhanced by supplementing the culture media with 
cholesterol [24], which was suggested to enhance receptor clustering 
and promote signaling.

Angiogenesis and extravasation:  An in vitro angiogenesis 
model using human umbilical vascular endothelial cells (HuVECs) 
demonstrated that gastrin can induce HuVEC differentiation and 
tubule formation to a level comparable to VEGF [25]. This increase 
in angiogenesis was proposed to occur through the transcriptional 
activation of heparin-binding epidermal growth factor (HB-EGF) by 
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gastrin [25]. Recent studies using gastric and colon adenocarcinoma 
cells confirmed that gastrin is transcriptionally up-regulated by hypoxia, 
independent of Hif, leading to increased secretion of biologically 
active forms of gastrin by tumor cells [26]. Gastrin’s pro-angiogenic 
effect was confirmed by Lefranc et al. who also demonstrated that 
gastrin treatment of HuVECs stimulated release of IL8 and enhanced 
endothelial cell migration [27]. In functional studies, gastrin induced 
up-regulation of VAM-1 and P- and E-selectins in HuVECs, and 
increased “rolling” of peripheral blood mononuclear cells (PBMCs) 
and their adhesion to HuVECs [28]. These effects were reversed by pre-
treatment with a CCKBR antagonist, confirming that gastrin signaling 
through this receptor was essential for the leukocyte-endothelial cell 
interaction. Although CCK receptors (CCKRs) have been identified on 
PBMCs [29], these effects of gastrin were confined to endothelial cells, 
and treatment of isolated leukocytes with gastrin had no functional 
effect on PBMC/HUVEC interactions.

Metastasis: Only a handful of studies have explored a potential role 
of gastrin signaling in tumor cell metastasis. Stable reduction of gastrin 
expression in the human PDAC cell line BxPC-3 resulted in smaller 
tumors in vivo and a significant reduction in visible metastatic lesions 
[12]. Others have studied the effects of gastrin neutralization. In one 
study, gastrin was neutralized by administration of antibodies raised 
against the 9 amino-terminal amino acids of gastrin linked to diphtheria 
toxin [30]. Mice implanted with a human colorectal (AP5LV) cell 
line and treated with the anti-gastrin antibody had smaller primary 
tumors and fewer pulmonary metastases.  Similarly, mice treated with 
a neutralizing antibody to the N-terminal region of the CCKBR, which 
encompassed the gastrin binding site, had reduced liver tumor burden 
after intraperitoneal injection of the human colorectal cancer cell line 
C170HM2 [31].

Gastrin, cholecystokinin receptors, and the fibrotic tumor 
microenvironment

The highly fibrotic tumor microenvironment in PDAC is thought 
to contribute to the widespread chemoresistance in this disease [32]. 
Highly desmoplastic stroma is evident surrounding even early pre-
neoplastic pancreatic lesions in both humans and mouse PDAC 
models [33]. Pancreatic stellate cells (PSCs) are the primary source of 
fibrotic extracellular matrix (ECM) deposits in PDAC, prominently 
including collagen and fibronectin [34-37]. Indeed, recent work 
clearly demonstrates that PSCs play critical roles in development and 
progression of pancreatic cancer [36,38,39].

When activated by growth factors or cytokines, PSCs assume a 
myofibroblast-like phenotype and secrete collagen and fibronectin 
[36]. Studies using cultured rat PSCs have shown that these cells express 
both sub-types of CCKRs, CCKAR and CCKBR, and respond to both 
cholecystokinin and gastrin stimulation by secreting collagen [15,37]. 
In fact, cholecystokinin and gastrin each appear to activate rat PSC 
sin a fashion similar to TGF β, a well-established stellate cell activator. 
Additionally, antagonism of CCKRs on cultured rat stellate cells in 
vitro completely blocked collagen production and ECM deposition 
[15]. Given that gastrin is expressed early in the development of 
human pancreatic ductal intraepithelial neoplasia (PanIN) [40], and 
that pancreatic tumor cells secrete biologically active forms of gastrin 
into the tumor microenvironment [41], PSCs may be responding to 
gastrin in a paracrine fashion that stimulates desmoplastic responses. 
Supporting this conjecture, recent studies by our group indicate that 
blockade of CCKR signaling with a broad-spectrum CCKAR and CCKBR 
antagonist significantly reduced fibrosis surrounding mPanIN  lesions 
in 8 month old Pdx1-Cre/ LSL-KrasG12D mice, a transgenic model of 

pancreatic cancer (unpublished data). Additional studies are required 
to assess the effect of receptor blockade on invasion and metastasis 
in this model. Another recent study demonstrated that mice that 
constitutively overexpress gastrin have more myofibroblasts in their 
colonic epithelium than wild-type mice, and that these myofibroblasts 
secrete IGF-2 in response to gastrin stimulation [42].

Recent studies have indicated by PSCs have many stem cell 
characteristics [43], and that PSCs can functionally replace hepatic 
stellate cells in liver regeneration [43]. Further work has shown that 
hepatic stellate cells, the functional counterpart to PSCs, directly 
mediate the differentiation/activation of macrophages [44]; the 
activated macrophages showed a distinctive IL6-high/IL10-low/TGF 
β-high pattern and exhibited specific activation of p38 MAPK pathway 
(see below), a pathway known to be important in macrophage function 
[45].

There are a number of features of the inflammatory pathways 
within the PDAC microenvironment which may relate to risk factors 
for developing PDAC, including obesity and diabetes [46,47]. For 
example, the M1 macrophage inflammation has been associated with 
obesity-related insulin resistance [48,49], and there are increased 
numbers of islet-associated macrophages in type 2 diabetes which 
appear to be recruited in response to IL8 secretion [50].

Proinflammatory (M1) phenotypic changes may have relevance for 
obesity as another recognized risk factor for development of PDAC. 
Obesity has been associated with increased adipose tissue infiltration 
by macrophages and their polarization to a  proinflammatory M1 
state [51]. Further studies on adipose tissue macrophages by Lumeng 
and co-workers [52,53] have also delineated a role for activated 
macrophages in obesity. Using two obese mouse models – a high fat 
diet fed mouse model, or a transgenic CCR2-KO mouse model, they 
found that phenotypic conversion of adipose tissue macrophages 
from alternatively activated (M2a) to classically activated (M1) 
phenotype was due to localized recruitment of the inflammatory 
subtype to macrophage clusters, which was dependent upon C-C motif 
chemokine receptor 2 (Cccr2), and was not a conversion of resident 
M2 macrophages to M1  phenotype.  Han et al. recently demonstrated 
that obesity-induced insulin resistance and inflammation is largely 
dependent upon cJun NH2-terminal kinase (JNK) in M1-polarized 
macrophages [54]. 

Circulating Tumor Cells (CTCs) in pancreatic cancer:  
Influence of Stromal components, and a Speculative Role for 
Macrophages and Gastrin:CCKBR Signaling in Dissemination 
of CTCs

As with many other cancers, the prognostic significance of CTCs in 
pancreatic cancer patients is an area of intense investigation.  A number 
of recent studies have detected CTCs in pancreatic cancer patients 
using a variety of approaches, including Cell Search and “isolation by 
size of epithelial tumor cells (ISET) [55], high-definition images [56], 
and amplification of multiple molecular markers [57-59].  Indeed, it 
is becoming clear that CTCs in PDAC, as in many other cancers, will 
have important diagnostic/prognostic significance.  

However, there are many caveats which should be mentioned with 
regard to CTCs.  First, the nature of the CTCs actually responsible for 
development of metastatic lesions (the “bad guys”) is not known. While 
CTCs have shown prognostic relevance in many cancers, including 
pancreatic, there is concern that standard approaches to measurement 
may be compromised. The FDA-approved CellSearch assay (which 
depends upon identification and counting of EpCAM+/CD45- cells) 
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apparently provides a surrogate measure of the “bad guys”, but 
problems can arise with it.   For example, studies have demonstrated 
that CTCs may escape EpCAM-based detection due to the epithelial-
mesenchymal transition [60], often a prominent feature of PDACs, and 
there are many reports for various types of cancers where EpCAM-
negative CTCs have been described (e.g. breast cancer; [61,62]). 
Specifically with regard to PDAC, Khoja et al. [55] reported that ISET 
detected CTCs in many more PDAC patients than Cell Search (93% vs. 
40%), and also noted that there was marked heterogeneity in staining 
for various markers used, including pancytokeratin and vimentin, 
and E-Cadherin.  We have also reported isolation of large CTCs from 
peripheral blood of PDAC patients who were negative for CTCs by 
Cell Search analysis [63]; these CTCs comprised large cells which co-
expressed pancytokeratin markers, the common leukocyte antigen 
CD45, as well as the macrophage marker CD14 [63].  

Tissue infiltrating macrophages (TIMs) may not only have 
pleiotropic effects on PDACs and pancreatic stroma, but may in 
addition actively participate in dissemination of PDACs.  TIMs have 
been shown to be important players in pancreatic cancer [67]. Targeting 
TIMs, via inhibition of the Cccr2 receptor (or colony-stimulating 
factor-1 receptor), decreased the number of tumor initiating cells 
in PDACs, inhibited metastases, and increased antitumor T-cell 
responses.  Conversely, TIMs were also shown to directly enhance 
the tumor-initiating cells of PDACs by activating STAT3, facilitating 
macrophage-mediated suppression of CD8+ T lymphocytes [67].  

Summary
We hypothesize that stromal cells in the inflammatory 

tumor microenvironment of PDACs are important players in the 
dissemination of PDAC cells, via actions of gastrin and the CCKBR. 
Gastrin activates PSCs, which in turn activate macrophages.  A subset 
of these macrophages appear to also express CCKBR, and we routinely 
observe large, epithelioid cells, as well as acute/chronic inflammatory 
cells and PSCs in focal areas in the immediate vicinity of ductal 
epithelium (Figure 1), suggesting the working hypothesis that the large 
epithelioid CCKBR+ cells represent activated TIMs. Such activated 
macrophages, with active signaling of the p38MAPK and TGFβ 
pathways, seem to actually fuse with tumor cells, and could thus confer 
the phenotype for PDAC CTCs described by Sergeant et al. [66] and 
account for our findings [63]. In fact, this fusion process has long been 
proposed as a unifying concept for the basis of metastases by Pawelek 
and co-workers [68-70], a process which is eminently consistent with 
the literature on TIMs and CTCs in PDAC.
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