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Introduction
There is a complex dependency between a protein’s sequence 

and its structure, and determining the structure given a sequence is 
one of the greatest challenges in computational biology [1]. In recent 
years Deep Neural Networks (DNNs) and other related deep neural 
architectures have become popular tools for machine learning; with 
DNNs currently state-of-the-art in many problem domains including 
speech recognition, image recognition and natural language processing 
tasks [2]. Conventional machine learning techniques such as support 
vector machines, random forests and neural networks with a single 
hidden layer are limited in the complexity of the functions they can 
efficiently learn. These methods often require careful design of features 
so that patterns can be classified. DNNs have recently been shown 
to outperform these conventional methods in some areas as they are 
capable of learning intermediate representations, with each layer of 
the network learning a slightly more abstract representation than the 
previous layer [3,4]. With enough layers very complex patterns can 
be learned. This ability to learn features automatically is helpful for 
proteins, as it is not known what the ideal mid or high level features are 
for protein structure prediction problems.

DNNs are neural networks with multiple hidden layers (usually 
more than 2) which can efficiently learn complex mappings between 
features and labels. The problems that DNNs excel at are those where 
there may be very complex relationships between the inputs and the 
labels, and where large amounts of training data are available. These 
characteristics have made DNNs popular for solving problems in protein 
science. The basic DNN consists of layers of hidden units connected by 
trainable weights. The weights are trained using the backpropagation 
algorithm to minimise the error between the NN output and the true 
output on a training set. Various architectures have been tailored to 
specific problems, the simplest architecture is the multi-layer feed-
forward neural network, for images convolutional neural networks are 
used, and for sequence problems recurrent neural networks are used.

Having a large amount of training data is a requirement for 
DNNs, as more trainable parameters usually requires more training 
data to reliably learn. When designing neural networks input features 
need to be normalised, especially when features are heterogeneous. 
Feature selection is also beneficial for achieving good classification and 
regression performance [5,6].

Feed-forward DNNs 
Many current state-of-the-art protein predictors are based on feed-

forward DNNs that use a fixed-width window of amino acids, centered 
on the predicted residue. The window is moved over the protein so that 
predictions can be made for each residue.

PSIPRED was an early protein secondary structure predictor based 
on a neural network with a single hidden layer [7]. PSIPRED achieved 
accuracies of around 80% when predicting 3 secondary structure 
elements: helix, coil and sheet. Later predictors include SPINE-X, 
Scorpion, DNSS and SPIDER-2 which are based on deeper neural 
networks and increase the secondary structure prediction accuracy to 
around 82% [8-11]. In addition to 3 state secondary structure, other 
protein properties have also been predicted using deep neural networks 
including Accessible Surface Area (ASA), phi and psi angles, theta and 
tau angles, and disorder prediction [8,11-16].

Other Architectures
In addition to standard feed forward DNN architectures, Recurrent 

Neural Networks (RNNs) are tailored to sequence prediction problems. 
RNNs were developed to handle time series of information such 
as speech signals. These networks can pass information from one 
time step to the next, so context information contained earlier in the 
sequence can be utilized later in the sequence. Bidirectional Recurrent 
Neural Networks (BRNNs) were later introduced to utilize information 
along the entire sequence [17]. RNNs can be considered to be very deep 
neural nets since information may potentially be passed through many 
time steps. Early RNNs had problems learning when they were required 
to remember information over long time periods. Long Short Term 
Memory (LSTM) RNNs were proposed to circumvent these problems 
and have become widely used for sequence prediction tasks [18].
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Abstract
Determining the structure of a protein given its sequence is a challenging problem. Deep learning is a rapidly 

evolving field which excels at problems where there are complex relationships between input features and desired 
outputs. Deep Neural Networks have become popular for solving problems in protein science. Various deep neural 
network architectures have been proposed including deep feed-forward neural networks, recurrent neural networks 
and more recently neural Turing machines and memory networks. This article provides a short review of deep 
learning applied to protein prediction problems.
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RNNs have been applied to secondary structure prediction with 
some success [19-25]. The recurrent connections in the RNN remove 
the need for large context windows, as the surrounding context is 
provided by the network. RNNs have also been applied to protein 
disorder prediction [26]. Basic RNNs can handle arbitrary length 
1-dimensional input and output sequences, but they can be modified to 
handle arbitrarily sized 2-dimensional (and higher) inputs and outputs. 
These 2-D RNNs have been applied to protein contact map prediction 
in which a prediction is made for every pair of residues in a protein, 
as well as prediction of disulfide bridges [27-32]. The latest area of 
research in neural network architectures is towards adding memory to 
RNNs for so called neural Turing machines and memory networks [33-
35]. These networks can be trained to solve problems that basic RNNs 
are incapable of solving, e.g., given examples of sorted and unsorted 
data, learn to sort new unseen data. These architectures have not yet 
been applied to protein prediction problems and it remains to be seen 
whether they will be able to succeed where simpler architectures have 
not.

Conclusion
This article has attempted to give a short non-exhaustive overview 

of the applications of DNNs to protein structure prediction problems. 
Deep learning is a rapidly evolving field which excels at problems 
where there are complex relationships between input features and 
desired outputs, problems that simpler classifiers are incapable of 
solving. The main strength of deep learning is the ability to easily 
take advantage of increases in the amount of data and computational 
power. One of the catalysts for the success of deep learning for speech 
and image recognition problems was the emergence of large datasets 
and sufficient computational power to process them. As more protein 
data becomes available we hope that deep learning can provide similar 
improvements to protein structure prediction problems. New deep 
learning architectures will only accelerate this progress.
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