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Abstract

The identification of B-cell epitopes is imperative for the rational design of vaccines, diagnostics and
immunotherapeutics. Several bioinformatics resources are freely available for the prediction of B-cell epitopes,
however despite advances in recent years, they still possess limited predictive capabilities. The aim of this review is
to highlight and describe the algorithms of the most widely used free B-cell epitope prediction resources. The
reasons behind the limited predictive powers of these algorithms are also discussed.
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Introduction
A B-cell epitope is a collection of distinct amino acid residues on an

antigen that antibodies recognize and specifically bind to, thereby
activating a protective immune response [1-3]. B-cell epitopes are
classified according to their orientation in space as being either linear
or discontinuous. Linear B-cell epitopes are composed of contiguous
residues in the primary structure [1]. On the other hand,
discontinuous B-cell epitopes comprise residues remotely located in
the primary structure that are brought into close proximity due to the
folding of the protein [1]. Only 10% of B-cell epitopes are linear and
90% are discontinuous [3]. Since linear B-cell epitopes do in fact adopt
a conformation, the distinction between linear and discontinuous B-
cell epitopes is a grey area [2,4].

The identification of B-cell epitopes is key to designing more
effective vaccines [5,6]. Recombinant vaccines containing either a
single or multiple B-cell epitopes from different serotypes can be
rationally designed in a cost, time-effective and safe manner [7]. Also,
protein subunits with the structural and immunogenic properties of
their whole antigens may be designed and used as therapeutic and
diagnostic tools [8-10].

Limitations of Experimental B-Cell Epitope
Determination Methods

Experimental methods of elucidating B-cell epitopes include
monoclonal antibody (MAb)-resistant variant studies, also known as
virus neutralization tests [11], peptide scanning [8,12,13] and MAb-
antigen contact studies [11]. Despite the successes of experimental B-
cell epitope determination methods, they are laborious and not feasible
when searching for epitopes on a large scale [1]. MAb-antigen contact
studies, which is deemed the most reliable of the B-cell epitope
determination strategies, is curbed by the limited availability of X-ray
crystal structures of MAb-antigen complexes [14]. Computational B-
cell epitope prediction methods have therefore been proposed as a cost

and time-effective alternative to the laborious and resource-intensive
classical experimental methods [15].

Computational B-Cell Epitope Prediction Methods
High-performance computers are able to execute algorithms of

increasing complexity at decreasing costs and timespans.
Consequently, computational methods reduce epitope prediction time
by as much as 95% [16] and also have the potential to predict B-cell
epitopes on a genome-wide scale [1].

Computational B-cell epitope prediction methods exploit the
inherent physicochemical properties of B-cell epitopes in their
algorithms [17]. B-cell epitopes tend to be more exposed to solvent
than their surrounding surface-exposed residues and it is this high
surface-exposure of antigenic regions that makes them highly flexible
[18-20]. A high-flexibility is necessary in order to accommodate the
conformational changes that take place upon B-cell epitopes binding
with Abs [19]. Furthermore, it would be reasonable to assume that
flexibility is a prerequisite of antigenic sites when one takes into
consideration the plasticity of the complementarity determination
regions (CDRs) of Abs.

Computational B-cell epitope prediction methods are broadly
divided into sequence and structure-based methods as well as into
linear and discontinuous epitope prediction methods. What all these
methods essentially have in common is that they provide a way of
correlating the physico-chemical properties of the respective amino
acids to their probable location in the protein structure [1,21].

Prediction Tools for Linear B-Cell Epitopes
Propensity scale methods are the most common way by which

linear B-cell epitopes are predicted and they are entirely dependent on
the primary structure of the proteins [22,23]. The original propensity
scale methods make use of hydrophilicity [24], secondary structure
[25,26] and side-chain solvent accessibility [27] in their algorithms
[23]. Modern linear epitope algorithms make use of a combination of
propensity scale methods, but have been shown to only be marginally
better at predicting linear epitopes [1,28]. In a similar manner to the
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experimental peptide scanning methods, propensity scales are not
highly successful for discontinuous B-cell epitope prediction unless a
given reading frame contains the amino acids that are the major
determinants of the conformation of the B-cell epitope [29].
Alternatively, structure-based methods are more ideally suited for the
prediction of discontinuous B-cell epitopes [22].

Prediction Tools for Discontinuous B-Cell Epitopes
Discontinuous B-cell epitope prediction methods employ various

algorithms that mostly exploit a combination of structural and
propensity scale-based information [22]. Some examples of
discontinuous epitope prediction programmes that are a combination
of structure and propensity scale-based methods are Discotope2.0,
BEPro and SEPPA [4,30,31]. It has been shown that the most
successful integrated methods consider amino acid composition,
secondary structure and surface exposure in their algorithms [30].
There are however, some purely structure or propensity scale-based
discontinuous prediction programmes that perform as well as
integrated ones, namely Ellipro and Epitopia respectively [9,32].

Discontinuous B-cell epitope prediction methods require the 3-D
structure of the antigen as input [33]. In cases where no structure is
available, some of the programmes build homology models of the
antigens and then proceed to predict B-cell epitopes from the models
[32].

Devising a Discontinuous Epitope Prediction Method

Training dataset construction
The first step to devising any B-cell epitope prediction algorithm is

the definition of a training dataset. Discontinuous B-cell epitope
prediction methods use X-ray crystallographic information of MAb-
antigen complexes to train their algorithms [22]. Redundancy is
removed from the training datasets by generally allowing protein
families to have equal representation [18]. To avoid over-fitting the
algorithm, different parts of the dataset are used for training and
evaluation [18].

B-cell epitope definition and benchmark dataset annotation
In order to train the prediction algorithms, a B-cell epitope needs to

be defined [22] and the various prediction methods describe B-cell
epitopes differently. In the Discotope2.0 [30] dataset, B-cell epitopes
are defined as those antigen amino acids that are a distance of at most
4Å from any of the Ab atoms [18]. In the BEPro training dataset, a B-
cell epitope is any antigen residue that is no further than 6Å from the
CDRs of the Ab chains, thereby excluding incidental contacts [4,34].

Surface exposure is another measure incorporated in the B-cell
epitope prediction algorithms in order to aid in the definition of
epitopes. In Epitopia, a surface amino acid is defined as any residue on
a 3-D structure with a relative accessible surface area (relative ASA)
greater than 0.05 [17]. For SEPPA, a residue was defined as surface
exposed if it had at least 1Å2 of ASA [31]. Furthermore, a surface
exposed residue was a B-cell epitope if it lost at least 1Å2 of ASA upon
binding with its Ab [31]. In Discotope2.0 the upper half-sphere
neighbour count measure [35] was used as a measure of surface
exposure (Figure 1) [30,35].

Figure 1: Half sphere exposure. The half sphere exposure (HSE) is a
measure of the degree of surface exposure of an amino acid on a
protein. It counts the number of C∝ neighbours within a half
sphere of a given radius. The fewer the number of C∝ neighbours
the more exposed an amino acid is. The dotted line represents the
position of the plane that divides the sphere with a central C∝
atom and radius ‘R’. The thick black lines represent part of the C∝
backbone of the protein. Adapted from Hamelryck [35].

An additional B-cell epitope definition that is part of Ellipro’s
algorithm is that of the protrusion index [32]. The protrusion index
provides a simplistic way of detecting those parts of the protein that
protrude from the protein’s surface. Residues with high protrusion
index values are often associated with antigenic sites [20].

Discontinuous Epitope Prediction Machine-Learning
Algorithms

Five discontinuous B-cell epitope prediction algorithms are
discussed in this review, namely Discotope (versions 1.0 and 2.)
[18,30], BEPro [4], Ellipro [32], Epitopia [9] and Seppa [31] (Table 1).
These are among the most widely used and freely available
discontinuous B-cell epitope prediction algorithms to date, as well as
the ones suitable for the analysis of multimeric structures such as virus
capsid proteins [36].

Discotope
Discotope (versions 1.0 and 2.0) integrates amino acids statistics

expressed as log-odds ratios, spatial information and surface exposure
in its algorithm [18,30]. It is notable in that it was the first B-cell
epitope prediction method (as Discotope1.0) to make use of both
propensity scale scores and structural information in its algorithm
[18]. During execution of the Discotope algorithm, a 10Å radial sphere
around each residue along the antigen chain is explored for intra-
molecular contact residues (Figure 1). The total number of residues
within the sphere is subtracted from the sum of propensity scores of
those ‘contact’ residues’ [30]. Discotope1.0 is available as a standalone
version, while Discotope2.0 is available as an online server (Table 1).
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Epitope
Prediction
Method

Online Server Brief Notes
(Features used in
prediction
method)

Discotope1.0

Discotope2.0

www.cbs.dtu.dk/services/DiscoTope/ Amino acid
statistics, spatial
context, surface
accessibility

BEPro http://pepito.proteomics.ics.uci.edu Half sphere
exposure values

Ellipro http://tools.immuneepitope.org/ellipro Protrusion index

Epitopia http://epitopia.tau.ac.il Based on Naïve
Bayes classifier
with
physicochemical
and structural
geometrical
properties

SEPPA http://lifecenter.sgst.cn/seppa/ Unit patch of
residue triangle

Table 1: A summary of the features of some widely used B-cell epitope
prediction methods. Adapted from Sun et al. [33].

BEPro
BEPro, formerly known as PEPITO, was initially conceived as an

alternative method to Discotope. BEPro, like Discotope combines
propensity scales with surface exposure information, namely the upper
half sphere neighbour count measure (Figure 1). BEPro utilizes the
Discotope amino acid propensity scale [18] in its algorithm, side-chain
orientation as well as solvent accessibility data [4]. BEPro is available
online as a part of the SCRATCH suite of programmes [37] (Table 1).

Ellipro
Ellipro differs from the other B-cell epitope prediction methods in

that it does not require training [32]. It is based on the notion that
residues that protrude from the protein surface are more accessible for
Ab binding [38] and that these protruding residues can be identified by
treating the protein as an ellipsoid [39]. Ellipro uses Thornton’s
method [20] in combination with a residue-clustering algorithm to
predict B-cell epitopes [32]. Ellipro is available as a standalone version
and as an online server, which is part of the Immune Epitope Database
Analysis Resource (Table 1).

Epitopia
Epitopia applies two machine-learning based algorithms for the

prediction of B-cell epitopes from either the tertiary structure of the
antigen or directly from its sequence [9]. A total of 44 physico-
chemical and structural-geometrical properties for structure-based
prediction and 41 properties for sequence-based prediction were used
to train the Epitopia algorithm [17]. The immunogenic properties used
to predict B-cell epitopes from sequences naturally do not include
some of the structural-geometrical properties used for structure-based
prediction [17]. These properties included previously used as well as
novel amino acid propensity scales. Epitopia may be used via the
online server or it may be downloaded as a standalone version (Table
1).

SEPPA
SEPPA employs the concept of the ‘unit patch of residue triangle’ to

describe the local spatial context of a protein’s surface amino acids
[31]. The novel concept of ‘unit patch of residue’ is used by SEPPA to
give an improved description of the local spatial context on the antigen
surface. The unit patch of residue triangle is made up of any three
surface residues whose respective side-lengths is less than 4Å [31].
Those unit patches containing at least two B-cell epitopes were defined
as epitope unit patches, and those containing less than two B-cell
epitopes were defined as non-epitope patches [31]. Epitope propensity
scores are summed up for all unit patches within a 15Å radius of each
residue in the antigen [40].

Limitations of Computational B-Cell Epitope
Prediction Methods

Despite significant advances made in devising computational B-cell
epitope prediction methods, there are still limitations to the predictive
powers of their algorithms. There are therefore continued efforts to
improve their performances. One of the most widely used performance
evaluators for machine-learning algorithms is the area under the
receiver operating characteristic curve, also known as (AUC) or (ROC)
curve [41-43]. The true positive rate (TPR) is plotted on the y-axis and
the false positive rate (FPR) is plotted on the x-axis, thereby illustrating
how the TPR depends on the FPR [43] The TPR is also called
sensitivity or recall [43]. AUC values range between zero and one [41].
A method that scores 0.5 is deemed a random discriminator and one
that scores a value of one has a perfect predictive capability [22,43].
Currently, the top performing B-cell epitope prediction methods have
average AUC values ranging between 0.6 and 0.7, depending on the
evaluation dataset used [4,9,30,31].

Improper benchmark annotation limits the predictive ability
of b-cell epitope prediction algorithms and performance
evaluations

One of the major limitations to the improved performance of
computational B-cell epitope prediction methods is improper
benchmark annotation. Most B-cell epitope prediction methods allow
for the annotation of only one epitope per antigen in their training
datasets [4,9,18]. This not only excludes a large portion of known
epitopes but it does not take into consideration the fact that not all B-
cell epitopes on any particular antigen have been experimentally
identified [4,17,30].

Another form of improper benchmark annotation is that most of
the X-ray crystal structures in the training datasets consist of Abs
bound to single antigen chains, yet Abs in vivo are raised against whole
biological units [30]. A negative consequence of this, is that several
antigen contacts that are predicted as being available for binding to an
Ab are in fact involved in long-range intra-molecular interactions [30].

Improper benchmark annotation therefore not only has a direct
influence on the predictive abilities of the algorithms but also on the
performance measures of the methods [4,22,30]. A limitation of the
AUC for B-cell epitope prediction methods is that it underestimates
the predictive power of the algorithms as long as the training datasets
are under-annotated [9,30]. Otherwise good predictors consequently
call a number of false negatives [9,30,44].
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Conclusion
In spite of the limited predictive powers of the respective B-cell

epitope prediction methods, using a consensus of the results of the top
performing methods can ameliorate these limitations [36,45]. When
predicting putative novel B-cell epitopes, consensus results reduce the
likelihood of false positive results and increase confidence in positive
results [36].

If B-cell epitope prediction methods are to improve, there needs to
be constant efforts to update the training datasets of algorithms with
current epitope experimental data. The Immune Epitope Database 3.0
[46] is a valuable resource in this regard, as it currently has curated
experimental data of 120,000 B- and T-cell epitopes. This is
representative of at least 95% of the published epitopes as of the end of
2012 and this data is free and available to the public [47].
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