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Introduction
The Debye-Waller factor [1] is used to describe the attenuation 

of x-ray scattering or coherent neutron scattering due to the thermal 
motion. The Debye-Waller factor is also called the B-factor when 
measuring the flexibility of protein structure. The B-factor could be 
obtained by the formula:

Bfactor = 8π2 (µ2)

( )2 2 2 21Where ( )
3 x y zµ µ µ µ= + +

 The µx, µy, and µz represent the atomic displacements from the 
three coordinate axes. In a PDB (Protein Data Bank) [2] format file, 
every atom has a B-factor in the ATOM records, and the B-factor of a 
residue is the average of the B-factors of all the atoms that constitute 
this residue. The residues with low B-factors commonly have a stable 
structure and the ones with large B-factors are generally more flexible. 
The protein flexibility and B-factor act an important role in the 
research of the molecular recognition, catalytic activity, allosteric and 
evolution [3-7]. Hence, the research of B-factor could be help for the 
development of the related fields.

On the other hand, the available records of the protein sequences 
are far more than the ones of the protein structures. For example, 
the number of the records in the Uniport is more than 1,386,943 
[8], but the number of the entries in the RCSB Protein Data Bank is 
about 84,000 [2]. Thus the information based on the protein structure 
is still less than the information from protein sequence. Therefore, 
using protein sequence to speculate the information of the structure 
is always a research hotspot. For example, the Critical Assessment of 
Structure Prediction (CASP) experiment [9] is held periodically to find 
some models to predict the 3-D structure from the protein sequences. 
Using the sequence to predict the B-factor is complicated because of 
the lack of information that could link to the displacements of the 
protein atoms. A common way is to find the similar sequences that 
have the 3-D structure by using the sequence alignment tools such as 
BLAST [10] and ClustalW [11], then using some machine learning 
and statistical methods to generate a model for the prediction of the 
information of the residues. For example, Pan et al. [12] used the PSSM 

(position-specific scoring matrix) [13,14] and some other properties, 
such as the physicochemical properties, to predict the B-factor through 
a two stage support vector regression (SVR) [15]. 

In this study, we attempt to predict the B-factor based on the 
protein sequence. 107,322 residues from 474 protein chains constitute 
the training and test datasets. The properties in the AAindex and the 
predicted information of the secondary structure, relative accessibility, 
disorder and mutation energy change are used as the attributes of the 
datasets. Four machine learning methods, such as the random forest 
regression and liner regression, are used to predict the B-factor. All 
the predicting results are listed in the tables in the result section for 
discussion and comparison. The modeling and predicting results could 
be used as a reference for the related research.

Materials and Methods
In this study, the work flow is described in Figure 1, and the details 

are listed in the subsections respectively.

Dataset

Based on the previous works [12,16], the two datasets in this study, 
PDB196 and PDB290, are used. Each protein chain in the two datasets 
has more than 80 residues, and the sequence similarities among the 
protein chains are less than 25%. Besides, according to the records in 
the PDB format files, the resolutions of the protein crystal are less than 
2Å, and the R-factors are less than 0.2. Because of the update of the 
Protein Data Bank, some proteins are removed by some reasons such 
as the overlap or redundancy with other entries. The related ids are: 
1191, 1531, 1alo, 1gdo, 1hal, 2ilb, luae, lxgs, lycc, 1eqo, 1hlr, 1uox. After 
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taking out the absent entries, totally 64,844 residues from the PDB290 
are used as the training dataset, and 42,478 residues from PDB196 are 
used as the test dataset. 

Descriptors

The descriptors are used to generate the attributes of the residues 
in the datasets. In this study, the disorder, mutation information, 
secondary structure, relative accessibility, physicochemical and 
biochemical properties are used. With these descriptors, 1105 (1 + 
40 + 2 + 531 * 2) attributes are generated for modeling. The related 
attributes are generated by the tools or resources respectively: DISpro, 
MUpro, SCARTH and AAIndex.

DISpro

The DISpro [17] is a software which could predict the disorder 
regions of an amino acid sequence by the 1D-RNNs (1-D recursive 
neural networks) [18], and could give each residue a value to measure 
the probability of disorder. The residues in the disorder regions are 
generally partially or wholly unstructured and do not fold into a 
stable state, and would be more flexible. Therefore, in this study, the 
probability values are used as an attribute of the dataset.

Mupro

The ability of the mutation from a residue to another could reflex 
the flexibility of the tested residue in some degree. The Mupro [19] 
could predict the value of energy (Gibbs free energy) change and the 
affection of a mutation by using the support vector machine (SVM). 
Being similar with the PSSM [13,14], both the energy changes and 
affections could be represented as 20 attributes which are consisted 
with the 20 natural amino acids.

SCARTH

The SCARTH [20] is a web server which could predict some 
properties of protein. In addition, a free desktop version is provided 
and could predict the protein secondary structure and the relative 
solvent accessibility. The second structure could be predicted as 8 
classes (Table 1).

The relative solvent accessibility could be predicted into 20 
classes which represent the thresholds from 0% to 95%. For example, 
if the predicted value of a residue is 65, it means the relative solvent 
accessibility of this residue is ranging from 65% to 70%. 

Different secondary structures could have disparate structure 
flexibilities, and the relative solvent accessibility is correlated with 
the environment of a residue. The two attributes would be related to 
the structure flexibility. In this study, the information of the second 
structure and relative solvent accessibility are used as 2 attributes of 
the datasets.

Attributes from AAIndex

AAindex: AAindex [21] is a database of numerical indices 
representing various physicochemical and biochemical properties 
of amino acids and pairs of amino acids. We think that some 
physicochemical and biochemical properties might be correlated to the 
B-factor, thus the information in AAIndex1 (a part of AAindex) is used 
for the amino acid residues. In this study, the indexes in AAindex1 are
used for the residues. Some indexes which contain incomplete value
(such as the value of residue P is NA in the index with the header
AVBF000101) are ignored. Finally, 531 indexes are used to generate
the attributes. Besides, the values of the residues would be reassigned in 
consideration of the affection from the adjacent residues.

Reassign the values via the residue contact network

Considering that the residues in a protein chain would be affected 
by some adjacent residues, the values of the residues from the AAIndex1 
were reassigned through the amino acid contact network (Figure 2).

For a residue r, assume a set R={s | s is in contact with r} to represent 
all the contacted residues of r, the new value of r could be represented 
by the average value:
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 Through the network, the affection from the adjacent residues 

could be contained. Besides, because that only the protein sequences 
are used, the residue contact networks are generated by the software 
SELECTpro [22], which could predict the protein contact network 
based on the protein sequence.

The standardization of the values

Fasta Sequences

Dataset

Modeling

Second structure and
Relative accessibility

AAindex1

Cross-validation

Independent test

Selecting
attributes

Energy change and
Stability change Disorder

Reassigning through
residue contact network

Figure 1: The workflow of this study.

Name H G I E B T S C

Explanation alpha-helix 310-helix pi-helix extended strand beta-bridge turn bend the rest

Table 1: The explanations of the predicted secondary structure from the SCARTH.
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All the values, including the B-factor, are standardized according 
to the formula:
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The µ is the average value of an attribute and the σ is the unbiased 
estimation of the variance. 

Machine learning methods

Four machine learning methods are used to mine the datasets in 
order to build a satisfactory model for the prediction of the B-factor. 
Besides, considering that the indexes from AAindex might be 
redundancy, a variable selection method is used to reduce the number 
of the attributes. 

Select the attributes

The proportion of the number of residues and attributes is about 
97:1. This proportion means that the instances (residues) are plenty for 
modeling by the machine learning methods. But the redundancy of the 
attributes still might affect the performance of the modeling results. In 
order to reduce the redundancy and find the best attributes which are 
related to the B-factor, the variable selection method is used to reduce 
the dimension of the attributes.

In this study, the variable selection method is the ReliefF [23] in the 
data mining toolbox WEKA [24]. ReliefF could evaluate each attribute 
and give it a value, then the attributes could be ranked by these values. 
With the generated rank list, the number of the attributes is shrunk 

into 5, 15, 30, 50, 100 and 300. Moreover, all the modeling output are 
compared and listed in the Table 3.

Modeling methods

The linear regression, REP Tree, Gaussian Process regression 
and Random Forest regression are used to predict the B-Factor. 
Considering the memory usage and modeling efficiency, the machine 
learning software WEKA [24] and Waffles [25] is utilized. The linear 
regression and REP Tree are from WEKA, and the other two regression 
methods are from Waffles.

Moreover, the secondary structure is used as a pseudo-variable 
when modeling. Both WEKA and Waffles support the attribute which 
is consists of some classes and would convert this attribute into the 
pseudo-variable automatically.

Results
In this section, the modeling results would be provided and 

discussed.

Evaluation criteria

The CC (Correlation Coefficient), RMES (Root Mean Squared 
Error), MAE (Mean Absolute Error), RAE (Relative Absolute Error), 
RRSE (Root Relative Squared Error) are used to evaluate the prediction 
outputs. The formulas are as follows:
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Where the n means the number of the instances, the y means the 
measured value, the means the predicted value, and the y   and ŷ
mean the average values of the measured and predicted values.

Explanations

The target node

The contacted node

Other nodes

The changed value of the target node is:

 (3.6+ 2.1+2.2+3.2+1.3+1.9)=2.38

1.1
2.1

2.2
5.1

2.4

1.7

1.1

3.6

3.2

0.8

0.91.9

1.7

1.3

1
1+5

Figure 2: The reassignment via the amino acid residue contact network. 

Ranking Number Attribute Name Evaluated value
1 Secondary Structure 0.07575077

2 Relative Solvent Accessibility 0.04544955

3 Disorder 0.01861623

4 WERD780103 (squared) of AAindex1 0.00969653
5 QIAN880115 (squared) of AAindex1 0.00832180

6 NAKH900110 (squared) of AAindex1 0.00764229

7 QIAN880126 (squared) of AAindex1 0.00764118
8 QIAN880114 (squared) of AAindex1 0.00724505
9 QIAN880128 (squared) of AAindex1 0.00692809
10 TANS770102 of AAindex1 0.00691166

Table 2: The first 10 selected attributes.
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Independent test by using Linear Regression

Independent test by using Random Forest

Measured value                 Linear Regression Measured value REP Tree

Measured value Random Forest Measured value Gaussian Process Regression

Independent test by using REP Tree

Independent test by using Gaussian Process
Regression
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Figure 3: The comparison between the measured and predicted values.

Var Num Methods
Performance of Training dataset Performance of Independent Test dataset

CC RMSE MAE RAE RRSE CC RMSE MAE RAE RRSE

5

Liner regression 0.4549 0.8905 0.6341 0.8749 0.8906 0.4577 0.7680 0.5664 0.9163 0.9021
Gauss Process 0.4472 0.9451 0.6779 0.9353 0.9452 0.4438 0.8036 0.6173 0.9987 0.9940

REP Tree 0.4545 0.8933 0.6346 0.8756 0.8934 0.4103 0.8051 0.5904 0.9551 0.9457
Random Forest 0.4820 0.8764 0.6236 0.8605 0.8765 0.4342 0.7833 0.5750 0.9302 0.9201

15

Liner regression 0.4643 0.8857 0.6288 0.8676 0.8858 0.4645 0.7672 0.5665 0.9164 0.9012
Gauss Process 0.4361 0.9010 0.6400 0.8831 0.9011 0.4435 0.7930 0.5882 0.9515 0.9315

REP Tree 0.4699 0.8844 0.6248 0.8620 0.8845 0.4221 0.7978 0.5877 0.9508 0.9371
Random Forest 0.5858 0.8318 0.5840 0.8058 0.8318 0.4385 0.7725 0.5697 0.9216 0.9075

30

Liner regression 0.4697 0.8829 0.6257 0.8634 0.8829 0.4698 0.7655 0.5641 0.9125 0.8992
Gauss Process 0.4335 0.9021 0.6396 0.8825 0.9022 0.4390 0.7995 0.5909 0.9559 0.9392

REP Tree 0.4676 0.8892 0.6241 0.8611 0.8863 0.4209 0.7987 0.5877 0.9507 0.9382
Random Forest 0.6015 0.8283 0.5815 0.8023 0.8284 0.4150 0.7816 0.5767 0.9330 0.9182

50

Liner regression 0.4697 0.8829 0.6258 0.8634 0.8829 0.4698 0.7655 0.5641 0.9125 0.8992
Gauss Process 0.4271 0.9139 0.6497 0.8964 0.9141 0.4306 0.8426 0.6195 1.0022 0.9898

REP Tree 0.4736 0.8822 0.6214 0.8574 0.8823 0.4124 0.8086 0.5926 0.9586 0.9498
Random Forest 0.5964 0.8285 0.5813 0.8021 0.8286 0.3917 0.7901 0.5833 0.9436 0.9281

100

Liner regression 0.4697 0.8828 0.6257 0.8634 0.8829 0.4698 0.7655 0.5641 0.9126 0.8992
Gauss Process 0.4219 0.9197 0.6519 0.8995 0.9198 0.4240 0.8543 0.6269 1.0142 1.0035

REP Tree 0.4784 0.8793 0.6194 0.8546 0.8794 0.4091 0.8130 0.5957 0.9637 0.9550
Random Forest 0.5948 0.8289 0.5804 0.8008 0.8290 0.3646 0.7998 0.5911 0.9562 0.9395

300

Liner regression 0.4696 0.8829 0.6258 0.8634 0.8830 0.4698 0.7655 0.5641 0.9125 0.8992
Gauss Process 0.4116 0.9149 0.6490 0.8956 0.9150 0.4109 0.8241 0.6110 0.9884 0.9681

REP Tree 0.4787 0.8796 0.6186 0.8535 0.8798 0.4703 0.8144 0.5912 0.9564 0.9567
Random Forest 0.5996 0.8256 0.5783 0.7979 0.8256 0.3639 0.8003 0.5912 0.5964 0.9401

all

Liner regression 0.4703 0.8838 0.6263 0.8620 0.8829 0.4630 0.7697 0.5668 0.9221 0.9083
Gauss Process 0.3885 0.9317 0.6570 0.9066 0.9318 0.3988 0.8359 0.6183 1.0002 0.9819

REP Tree 0.4739 0.8825 0.6202 0.8557 0.8826 0.4233 0.7967 0.5880 0.9513 0.9538
Random Forest 0.4880 0.8732 0.6212 0.8572 0.8732 0.4469 0.7787 0.5717 0.9249 0.9148

Table 3: The predicting results.
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The selected attributes

The algorithm ReliefF could rank the attributes by its inside 
evaluation mechanism. The first 10 attributes and the corresponding 
evaluated values are listed in Table 2.

Table 2 demonstrated that the first 3 attributes are most important 
for modeling according to the evaluated values. Besides, the squared 
value from AAindex1 is also useful. The descriptions of the selected 
AAindex headers in Table 2 are: Free energy change (WERD780103), 
weights for beta-sheet (QIAN880***), normalized composition of 
membrane proteins (NAKH900110) and normalized frequency of 
isolated helix (TANS770102).

Table 2 also implies that the B-factor is mainly correlated with the 
structure and physicochemical information, thus the related attributes, 
such as the Secondary Structure, Relative Solvent Accessibility, disorder 
and weights for beta-sheet, are selected by the ReliefF.

The prediction results

The results are listed in the Table 3. The best value of each criterion 
is marked as bold.

The Table 3 illustrates that the random forest could train a model 
that is fit for the training dataset, but the predicting performance of the 
test dataset is relatively unsatisfactory. On the other hand, the linear 
regression, a fundamental algorithm, shows a stable performance on 
both modeling and prediction. Moreover, the prediction results are 
similar when the number of used attributes exceeds 30, and the best 
prediction performances are concentrated where the number of the 
attributes is 30. 

The comparisons between the measured and predicted values are 
provided in Figure 3. The used dataset in Figure 3 is the independent 
test data, and the used models are the ones which have the best training 
performance in Table 3. Moreover, considering of the large scale of 
the dataset, only 500 samples are randomly selected for this plotting. 
Besides, the 4 subfigures are provided separately as the supplementary.

Discussion
As an empirical result, if the distributions of a dataset in the sample 

space and feature space are adequate, the modeling results from the 
adapted methods would be similar. In this study, the number of the 
instances is abundant, thus the ‘dimensional disaster’ could be avoided 
and the fundamental algorithm, such as the linear regression, could 
get a stable predicting performance. However, according to the 
Table 3, the distribution of the training dataset and test dataset in the 
sample space might be not so consistent. Thus the predicting result 
of the model from random forest is not satisfactory. To verify this 
assumption, the training dataset and test dataset are combined into a 
large dataset, and the Random Forest with the 5-fold cross validation 
are used in modeling and validating. Moreover, to confirm the stability 
of the prediction, the inner 5-fold cross validation is utilized. The result 
is in Table 4.

The results from Table 4 could verify the assumption that the 
distribution of the two datasets are not very consistent. The Random 
Forest algorithm would build many trees by random sampling, thus the 
distribution of the sample space would affect the predicting result. The 
differences between the Table 3 and Table 4 indicate that the kind of the 

data in the training dataset could be extended.

Besides, according to the selected attributes in Table 2, the values 
of the disorder, relative accessibility and secondary structure are most 
important and are relative to the B-factor. It is obvious that the value 
of B-factor depends on different structure, but the predicting results 
imply that the relationship between the B-factor and the secondary 
structure might be simple so that the fundamental linear regression 
could get good predicting results. The predicting results from Random 
Forest also imply this point.

The comparison with other works

There are some similar works which were proposed by other 

Table 4:  The predicting results from the combined dataset by using Random 
Forest.

Var 
Num

Cross validation 
(inner/outer) Performance of Training dataset

CC RMSE MAE RAE RRSE

5

inner1 0.4651 10.1162 7.2018 0.8693 0.8855
inner2 0.4684 10.1391 7.1953 0.8672 0.8837

inner3 0.4681 10.0993 7.1854 0.8687 0.8839

inner4 0.4646 10.1212 7.1967 0.8700 0.8857
inner5 0.4655 10.1357 7.2052 0.8702 0.8853
outer 0.4692 10.1052 7.1783 0.8668 0.8833

15

inner1 0.5559 9.6909 6.7923 0.8199 0.8482
inner2 0.5546 9.7411 6.7971 0.8192 0.8490
inner3 0.5580 9.6846 6.7783 0.8195 0.8475
inner4 0.5528 9.7142 6.7863 0.8204 0.8501
inner5 0.5574 9.7036 6.7913 0.8202 0.8475
outer 0.5653 9.6396 6.7350 0.8133 0.8426

30

inner1 0.5675 9.6735 6.7625 0.8163 0.8467
inner2 0.5648 9.7334 6.7691 0.8158 0.8483
inner3 0.5688 9.6707 6.7520 0.8163 0.8463
inner4 0.5644 9.6995 6.7587 0.8171 0.8488
inner5 0.5686 9.6900 6.7604 0.8165 0.8463
outer 0.5787 9.6069 6.6955 0.8085 0.8397

50

inner1 0.5546 9.7149 6.7959 0.8203 0.8503
inner2 0.5513 9.7787 6.8099 0.8208 0.8523
inner3 0.5551 9.7201 6.7899 0.8209 0.8507
inner4 0.5525 9.7366 6.7939 0.8213 0.8520
inner5 0.5556 9.7331 6.7987 0.8211 0.8501
outer 0.5682 9.6381 6.7287 0.8125 0.8424

100

inner1 0.5643 9.6711 6.7409 0.8137 0.8465
inner2 0.5579 9.7510 6.7563 0.8143 0.8498
inner3 0.5637 9.6803 6.7365 0.8144 0.8472
inner4 0.5606 9.7010 6.7381 0.8146 0.8489
inner5 0.5636 9.6955 6.7415 0.8142 0.8468
outer 0.5760 9.5959 6.6652 0.8049 0.8387

300

inner1 0.5551 9.6912 6.7585 0.8158 0.8483
inner2 0.5483 9.7728 6.7785 0.8170 0.8517
inner3 0.5538 9.7031 6.7618 0.8175 0.8492
inner4 0.5496 9.7298 6.7611 0.8174 0.8515
inner5 0.5523 9.7276 6.7643 0.8170 0.8496
outer 0.5662 9.6215 6.6852 0.8073 0.8410

all

inner1 0.5147 9.9085 6.9437 0.8381 0.8673
inner2 0.5077 9.9881 6.9640 0.8393 0.8705
inner3 0.5148 9.9088 6.9445 0.8396 0.8672
inner4 0.5095 9.9408 6.9462 0.8397 0.8699
inner5 0.5113 9.9471 6.9554 0.8400 0.8688
outer 0.5255 9.8525 6.8823 0.8311 0.8612
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researchers. The related details are provided in the Table 5.

Since only the CC values are provided in the previous works, more 
detailed comparison, such as the comparison among the RMSEs, could 
not be provided. The other evaluation criteria would be useful and could 
reflect some properties in some situations. For example, according to 
the Table 3, the values of RMSE and MAE from the predicting results are 
generally better than the ones from training dataset, but the others are 
not. It might be caused by the difference of the ‘ iy y− ’ in the formula 
of RAE and RRSE. If the 2( )ii

y y−∑  or  ii
y y−∑  is larger, the values of 

RAE and RRSE would become smaller relatively, thus even though the 
predicted value is more close to the measured one, the RAE and RRSE 
would not be smaller because of the low variance of the B-factor values. 
This situation could reflect that the distributions of the B-factor among 
the training dataset and test dataset are different in some degree, and 
more samples are needed for modeling.

Conclusion
In this study, we use some predicted information of the protein 

structure based on the sequence and the indexes from AAindex to 
predict the B-factor. Four machine learning methods are used to mine 
the dataset, and finally we get the similar prediction results with other 
previous works. The used attribute is mainly related to the structure, 
physicochemical properties and biochemical properties, which might 
be more correlated to the B-factor. However, all the used attributes 
need to be generated from some machine learning model, and the 
predicted information would increase the noise of the dataset and 
decrease the performance of the final prediction. For example, we 
think that the reassignment via the contact network might be helpful 
for the adjustments of the attributes. However, the SELECTpro could 
only generate the contact network of the residues, thus the distances 
between two residues are missing and the cut-off threshold and the 
weighted reassignment could not be considered into this study. This 
limited situation would be improved through the rapid increase of data 
and the development of machine learning theory in the future. 

Besides, using protein sequence to predict the information based 
on the structure is a long-standing challenge. With the statistical 
methods, this challenge could be addressed in some extent. The 
evolution relationships among the query sequences and the alignment 
dataset could be generated through the sequence alignment tools, then 
the relationships could be used to link the sequences to some known 
structures. With the links, the needed information could be generated 
through some machine learning and statistical methods. In this study, 

we used more than one machine learning methods to predict the 
B-factor, and employed five criteria to assess the prediction results. We 
hope that this study could provide more information to the researchers 
in the related fields and could be useful for the researchers.
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