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Abstract
The quantitative structure–retention relationship (QSRR) was employed to predict the retention time (min) (RT) 

of pesticides using five molecular descriptors selected by genetic algorithm (GA) as a feature selection technique. 
Then the data set was randomly divided into training and prediction sets. The selected descriptors were used as 
inputs of multi-linear regression (MLR), multilayer perceptron neural network (MLP-NN) and generalized regression 
neural network (GR-NN) modeling techniques to build QSRR models. Both linear and nonlinear models show good 
predictive ability, of which the GR-NN model demonstrated a better performance than that of the MLR and MLP-NN 
models. The root mean square error of cross validation of the training and the prediction set for the GR-NN model 
was 1.245 and 2.210, and the correlation coefficients (R) were 0.975 and 0.937 respectively, while the square 
correlation coefficient of the cross validation (Q2

LOO) on the GR-NN model was 0.951, revealing the reliability of this 
model. The obtained results indicated that GR-NN could be used as predictive tools for prediction of RT (min) values 
for understudy pesticides.

Keywords: Pesticides; Quantitative structure–retention relationship;
Genetic algorithm; Multiple linear regression; Retention time (min); 
Artificial neural networks

Introduction
Pesticides with highly toxic effects, essential for agricultural 

production, include insecticides, acaricides, fungicides, herbicides, 
synergists, etc., and varieties and quantities of them used in different 
parts of worldwide. Due to their widespread use, pesticides need to be 
determined in various environmental, such as soil, water and air [1,2]. 
Owing to the toxicity of pesticides, the US Environmental Protection 
Agency (EPA) and the European Union (EU) have included them in 
their list of priority pollutants [3,4]. Thus, the development of reliable 
methods for systematic environmental analysis of pesticides residues 
is an important field of research. A wide range of analytical techniques 
has been developed for their identification of these contaminants often 
present at trace levels in environmental samples. The most frequently 
used methods for analysis of pesticides in natural ecosystems, water and 
foodstuffs are high performance liquid chromatography (HPLC) [5-7] 
and gas chromatography (GC) [8,9] with a varity detection system. 
For human consumption, which, as a consequence of persistency and 
toxicological effects of these micro-contaminants, has become in the 
last decades an essential aspect of environmental protection and human 
health safeguard policy [10,11]. 

An important property that has been extensively studied in 
quantitative structure property relationship (QSPR) [12] is the 
chromatographic retention time. The chromatographic parameters are 
expected to be proportional to a free energy change that is related to 
the solute distribution on the column. Chromatographic retention is a 
physical phenomenon that is primarily dependent on the interactions 
between the solute and the stationary phase. There are many reports on 
the application of QSRR in studying the retention properties of different 
compounds in various chromatographic systems [13-25]. 

In recent years ANNs [22,23] have gained popularity as a powerful 
chemometric tool that can be used to solve chemical problems [26-
29]. Compared to classical statistical analysis, ANN-based modeling 
does not require any preliminary knowledge of the mathematical form 

of the relationships between the variables. This makes ANN suitable 
for the analysis of data where a hidden nonlinearity or a complex 
interdependency among the variables is present. QSRR methodology 
aims at describing chromatographic behavior of solutes in terms of 
their structure and has been extensively applied for over two decades 
to several chromatographic systems [24-31]. It provides a promising 
method for the estimation of the retention properties based on the 
descriptors calculated from the molecular structure [12-20,26-32]. 
The main steps of a QSRR study include: data collection, molecular 
descriptors calculation and selection, correlation model development 
and model evaluation. The advantage of QSRR lies in the fact that 
the descriptors used to build the models can be calculated from the 
structure alone, and once a reliable model is built.

The main aim of this work was to establish a new QSRR model for 
predicting the RTs (min) of some pesticides in liquid chromatography 
using the GA variable selection method and the generalized regression 
neural network (GR-NN) technique. The performance of this model 
was compared with those obtained by MLR and multilayer perceptrons 
neural network (MLP-NN) techniques. 

Theory and Methods
Equipment and software

A pentium (R) Dual core personal computer (CPU E2180 2.00GHz) 
with the Windows XP operating system was used. Dragon software 
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(Ver. 3.0) (http://www.disat.unimib.it/chm.) was used for calculating 
molecular descriptors from molecular geometries which had been 
previously generated and optimized by means of the Hyperchem 
program (Ver. 7.0). Statistical investigation of the data has been 
performed mainly by the Statistica 7.1 software [33]. The GA toolbox 
in MATLAB 7 (http://www.isis.ecs.soton.ac.uk/isystems/kernel/) was 
used for selecting the appropriate descriptors.

Data set and descriptor generation

The data set for this investigation was taken from the literature [34]. 
A complete list of the compounds’ names and their corresponding RTs 
(min) are summarized in table 1. Chromatographic separation was 
performed at 40°C on an Atlantis dC18 column, 150 mm×2.1 mm, 3 

μm particle. Detection and quantification were performed with an AB 
API3000 LC-MS-MS equipped with an ESI Turbo Ion Spray source. The 
chemical structures of 43 molecules in the data set were drawn with 
Hyperchem software. Then obtained structures were preoptimized by 
using MM+ molecular mechanics force field, and then a further precise 
optimization was done with the AM1 semi-empirical method. The 
molecular structures were optimized using the Polak–Ribiere algorithm 
until the root mean square gradient was 0.01. The Dragon software was 
used to calculate the descriptors and 1243 molecular descriptors, from 
18 different types of theoretical descriptor, were calculated for each 
molecule. In this case, to reduce redundancy in the descriptor data 
matrix, correlation of the descriptors with each other and with the RTs 
of the molecules was examined and collinear descriptors (i.e. r>0.9) 

No pesticide Mor07p Mor28m H6m MLOGP C005 RT(exp) (min) RT (MLR) (min) RT(MLP-NN) (min) RT(GR-NN) (min)
1* Aminocarba 1.29 0.02 0.02 2.38 3.00 2.39 13.49 14.86 12.34
2 Butoxycarboxim 0.46 -0.01 0.02 0.26 2.00 3.78 8.69 7.19 8.11
3 Oxamyl 0.63 0.11 0.05 0.35 4.00 4.00 7.37 5.83 8.50
4* Methomylb 0.21 0.13 0.03 0.87 2.00 4.79 11.08 10.21 10.24
5 Vamidothion 0.45 -0.09 0.08 0.74 3.00 6.53 8.54 6.97 8.72
6 Ethiofencarbsulfon 0.77 -0.19 0.05 0.31 2.00 7.87 8.05 6.89 8.28
7 Pirimicarb 1.18 0.12 0.02 1.91 4.00 8.32 11.04 10.52 8.67
8 Dimethoate 0.23 -0.03 0.07 -0.76 3.00 9.74 5.17 4.49 7.98
9 Thiofanoxsulfone 1.12 -0.05 0.07 0.91 2.00 10.03 11.32 10.31 10.80
10 Butocarboxim 0.61 -0.06 0.01 1.60 2.00 12.40 11.37 12.45 11.92
11 Triacloprid 1.93 -0.01 0.05 1.37 0.00 13.06 16.33 16.40 17.09
12 Aldicarb 0.41 -0.20 0.08 1.60 2.00 13.52 11.18 12.19 11.32
13* Spiroxaminea 2.21 -0.11 0.02 3.29 0.00 14.68 19.80 17.00 19.24
14 Fenpropimorph 2.86 0.03 0.06 3.83 0.00 14.95 23.63 20.78 18.80
15 Demeton-s-methy 0.29 0.16 0.00 1.35 2.00 16.00 12.13 12.56 13.01
16 Propoxur 2.28 0.04 0.01 2.38 1.00 17.23 17.24 17.85 18.55
17 Bendiocarb 3.07 0.16 0.01 1.88 1.00 17.53 17.78 18.67 18.35
18 Dioxacarb 2.61 0.22 0.02 1.34 1.00 17.54 16.76 17.98 17.83
19 Carbofuran 3.09 0.16 0.01 2.27 1.00 17.56 18.79 19.70 18.66
20 Carbaryl 2.12 0.09 0.03 3.03 1.00 18.57 19.41 20.39 19.26
21 Atrazine 1.31 -0.14 0.08 1.77 0.00 18.95 16.25 16.77 17.16
22* Ethiofencarba 1.56 0.07 0.02 2.92 1.00 19.21 18.16 19.44 18.95
23* Isoproturonb 2.12 0.13 0.04 2.39 2.00 19.29 16.84 19.02 18.16
24 Metalaxyl 2.82 -0.01 0.08 1.91 2.00 19.30 16.00 17.01 17.91
25 Pyrimethanil 2.36 0.08 0.00 2.63 0.00 19.38 19.62 18.40 19.09
26 Diuron 1.07 0.23 0.33 2.65 2.00 19.44 23.05 19.15 21.24
27* 3,4,5-Trimethacarbb 1.68 -0.02 0.06 2.92 1.00 20.09 18.37 19.64 18.93
28 Isoprocarb 2.52 -0.07 0.06 2.92 1.00 20.10 18.73 18.95 19.27
29 Methiocarb 1.40 0.15 0.08 3.19 2.00 21.96 18.95 21.80 19.48
30 Linuron 1.03 0.43 0.30 2.65 2.00 22.31 24.02 21.34 22.44
31 Promecarb 1.95 -0.00 0.02 3.20 1.00 22.63 18.60 18.83 19.25
32 Iprovalicarb 3.29 0.03 0.12 3.18 0.00 22.71 23.80 22.65 21.24
33 Azoxystrobin 4.86 0.12 0.25 2.07 2.00 22.85 22.78 24.49 23.88
34 Cyprodinil 2.46 0.13 0.02 3.16 0.00 22.98 21.80 20.57 19.58
35 Fenoxycarb 3.91 0.11 0.12 3.18 0.00 24.60 25.01 24.05 21.83
36 Metolachlor 2.99 0.12 0.20 3.03 1.00 24.71 23.79 24.97 23.63
37* Tebufenozidea 3.98 -0.01 0.09 3.95 0.00 25.48 25.40 21.69 20.82
38 Haloxyfopmethy 3.24 0.27 0.29 2.86 1.00 28.29 26.81 27.06 27.38
39 Indoxacarb 4.94 0.39 0.33 3.17 2.00 28.49 29.49 29.75 28.24
40* Quizalofop-ethylb 3.72 0.23 0.08 2.81 0.00 29.06 24.26 24.48 23.17
41 Haloxyfop-2-ethoxyethyl 3.01 0.39 0.23 2.76 0.00 29.58 27.71 28.28 29.27
42 Furathiocarb 3.12 0.37 0.22 3.42 2.00 30.27 26.00 27.83 28.17
43* Fluazifop-butyla 4.25 0.25 0.23 3.32 0.00 30.76 29.12 28.53 28.55

*Prediction set
a:Test set
b:Validation set

Table 1: Experimental retention times of 43 pesticides.
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were detected. Among the collinear descriptors, those with the highest 
correlation with RTs were retained and the others were removed from 
the data matrix. The remaining descriptors were collected in a 43×443 
data matrix (X), where 43 and 443 are the number of compounds and 
descriptors, respectively. In order to obtain practical QSRR models, 
the significant descriptors should be selected from these molecular 
descriptors. 

Genetic algorithm for variable selection

Multiple linear regressions (MLR) 

MLR is a technique used to model the linear relationship between a 
dependent variable y (here retention time) and one or more independent 
variables xi, i.e., molecular descriptors as follow:

0 1 1 2 2 ...= + + + + n ny b b x b x b x                  (1)

The coefficients vector b is calculated using descriptor matrix X, 
containing an additional column with ones to calculate coefficient b0, 
according to the following equation:

1( )−= T Tb X X X X                    (2)

It is worth noting that MLR is based on least squares, i.e., the model 
is fitted such that the sum of squares of differences of experimental and 
predicted values is minimized. About 80% of the data set was randomly 
selected as training set and the remaining 20% was used as prediction 
set in multiple linear regression modeling. This 20% data set was 
divided into validation and test set for ANN modeling. 

Artificial neural network (ANN)

ANNs are inspired from the information-processing pattern of the 
biological nervous system [43]. Input, hidden and output layers are 
the main components of an artificial neural network. The input layer 
takes information directly from input files, and the output layer sends 
information directly to the outside world through computer or any 
other mechanical control system. There may be many hidden layers 
between input and output layers.

We processed our data with different ANNs looking for a better 
model. To build an ANN model, the general tasks include training 
ANN, testing ANN and validating ANN. The advantage of ANN is 
the inclusion of nonlinear relations in the model. In this study, ANN 
calculations were performed with Statistica 7.1 by intelligent problem 
solver (IPS) and by customizing the number of neurons (from 5 to 15) 
with a single or two hidden layer. This program can search automatically 
for the optimal type/architecture of ANN. The optimization process 
was performed on the basis of validation error minimization. For ANN 
modeling, the dataset was separated into three groups: training, test and 
validation sets. Training task is of the most fundamental importance to 
build ANN models in which the observed values of the output variable 
is compared to the network output, and then the error is minimized by 
adjusting the weights and biases. It is noteworthy that the training set 
was the same as that of MLR model, and the molecules in validation and 
test sets were just identical with those selected as prediction set in MLR 
model. The number of compounds in the training, validation and test 
sets was 34, 4, and 5, respectively, and the compounds of each set were 
randomly selected. The neural networks were trained using the training 
subset only. The validation subset was used to keep an independent 
check on the performance of the networks during training, with 
deterioration in the validation error indicating over-learning. If over-
learning occurs, the network will stop training the network and restore 
it to the state with minimum validation error. The test set was used 
to make sure that the validation error was not artificial. The network 
model will generalize if the validation and test errors are close together. 
The optimal network architecture was determined by ISP, which builds 
and selects the best models from linear (LIN), multilayer perceptron 
(MLP) with linear output neuron as well as generalized regression 
neural networks (GR-NN).

Model validation

Mor07p MLOGP H6m C005 Mor28m
Mor07p 1.000
MLOGP 0.557 1.000
H6m 0.433 0.306 1.000
C005 -0.587 -0.584 -0.018 1.000
Mor28m 0.430 0.351 0.306 -0.032 1.000

Table 2: The correlation coeffcient matrix for the selected descriptors by GA.

Genetic algorithm (GA) [35,36] is a stochastic optimization method 
inspired by evolution theory. It was used to select the most appropriate 
molecular descriptors for developing a reliable predictive model. To 
select the most relevant descriptors, the evolution of the population 
was simulated [37-40]. Each individual of the population, defined by 
a chromosome of binary values, represented a subset of descriptors. 
The number of genes on each chromosome was equal to the number 
of the descriptors. The population of the first generation was selected 
randomly. A gene was given the value 1 if its corresponding descriptor 
was included in the subset; otherwise, it was given the value zero. The 
number of the genes with a value of unity was kept relatively low to 
maintain a small subset of descriptors [41]. As a result, the probability 
of generating zero for a gene was set at least 60% greater than the 
probability of generating unity. The operators used here were crossover 
and mutation. The probability of application of these operators was 
varied linearly with generation renewal (0–0.1% for mutation and 70–
90% for crossover). The population size was varied between 50 and 250 
for different GA runs. A population size of typically 200 individuals was 
chosen, and evolution was allowed over, typically, 50 generations. For 
a typical run, evolution of the generations was stopped when 90% of 
the generations took the same fitness. The best selected descriptors for 
building QSSR models are shown in table 2. The five most significant 
descriptors selected by GA are: moriguchi octanol water partition 
coefficient (MLOGP), H autocorrelation of lag 6/weighted by atomic 
masses (H6m), 3D-MoRSE signal 07/weighted by atomic polarizability 
(Mor07p), 3D-MoRSE signal 28/weighted by atomic masses (Mor28m) 
and CH3X (C005). Detailed explanations about the descriptors were 
found in the Handbook of Molecular Descriptors [42]. These descriptors 
encode different aspects of the molecular structure and were applied 
to construct QSRR models. Table 2 represents the correlation matrix 
among these descriptors. 

Model validation is a crucial step of QSRR modeling. The calibration 
and predictive capability of a QSRR model should be tested through 
model validation. The most widely used squared correlation coefficient 
(R2) can provide a reliable indication of the fitness of the model, thus, 
it was employed to validate the calibration capability of a QSRR model. 
For validation of the predictive capability of a QSRR model, there are 
two basic principles: internal validation and external validation. The 
cross validation (CV) is a most commonly used method for internal 
validation. A good CV result (Q2) often indicates a good robustness and 
high internal predictive ability of a QSRR model. The statistical external 
validation can be applied at the model development step, in order to 
determine both the generalizability of QSRR models for new chemicals 
and the true predictive power of model, by properly employing a 
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prediction set for validation [30-33]. The internal predictive capability 
of a model was evaluated by cross validation coefficient (Q2) using the 
following equation:

                     (3)

Also, the root mean square error of cross validation (RMSECV) was 
employed to evaluate the performance of developed models which was 
calculated from the following equation:

2

1
( )

( ) −
−

=
∑n

i oi
y y

RMSECV f
n

                   (4)

where yi is the experimental values, y0 is the predicted values, ym is the 
mean of observed values and n is the number of molecules [43,44].

Results and Discussions
Multiple linear regressions (MLR)

The MLR model was built through a step-wise regression by using 
following descriptor subsets: MLOGP, H6m, Mor07p, Mor28m and 
C005. The built model was used to predict the external prediction set. 
The statistical characteristics of MLR model using five descriptors were 
listed in table 3 and the predicted values for all the pesticides were 
given in table 1. According to the criteria for a good model mentioned 
above, the MLR model using five descriptor chosen by GA method 
had satisfactory predictive ability. The resulting equation including the 
selected descriptors is as follows:

RT=10.327 (± 4.655)+2.389 (± 0.740) MLOGP+19.913 (± 6.901) 
H6m–1.568 (± 0.654) C005+8.462 (± 4.655) Mor28m  0.969 (± 0.604) 
Mor07p (5)

N=34, R=0.916, Q=0.894, F=167.043, S=3.105

The plot of experimental vs. predicted RTs (min) by MLR were 
shown in figure 1. 

Multilayer perceptron neural network (MLP-NN)

In order to explore the nonlinear relationship between RTs and the 
selected descriptors, ANN technique was used to build models. The 
parameters such as the number of nodes for hidden layer, learning rate, 
and momentum were optimized using the validation set. The ability to 
generalize the model was evaluated by an external test set. 

Taking the above-mentioned values as the reference the investigation 
of optimal non-linear network were under taken initially limiting the 
scope of search to the MLP networks [45]. The statistical results of 
the MLP-NN 5:5-5-1:1 network is shown in table 4 and the predicted 
RTs values for all the pesticides were given in table 1. The errors of the 
trained MLP-NN network are at least two orders of magnitude smaller 
than the respective errors generated by the linear network. Figure 2 
confirms the good quality of the constructed MLP-NN, by showing the 
relationship between the predicted and experimental retention values. 
Figure 3A depicts the network map for MLP-NN 5:5-5-1:1 network 
with five inputs, five neurons in the first layer, five neuron in second 
layer (hidden layer), one neuron in third layer and one output. 

Generalized regression neural networks (GR-NN)

The model that enables the prediction of properties of chemical 
compounds, and which, based on the topological and quantum-
chemical properties of their molecules, is by no doubt one of the more 
difficult and more complex models. Therefore, during modeling various 
types of neural networks were (experimentally) assessed, including 
Generalized Regression Neural Network (GR-NN) networks, which are 
considered in the literature as particularly predisposed to dealing with 
such complex problems [46-48].

The process of building the GR-NN network model is divided into 
two steps [49-51]. In the first step, in the space of the input signals, 
groups of similar cases are localized. This stage is realized using the 

No Descriptor Group Coefficient Std. error t-value
1 Mor07p 3D-MoRSE descriptors 0.969 0.604 1.604
2 MLOGP Molecular properties 2.389 0.740 3.229
3 H6m GETAWAY descriptors 19.913 6.901 2.885
4 C005 atom-centred fragments -1.568 0.654 -2.399
5 Mor28m 3D-MoRSE descriptors 8.462 4.655 1.818

Table 3: Molecular descriptors employed for the proposed MLR model.
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Model Data set QLOO2 RMSECV R F
MLR Training 0.800 2.835 0.916 167.043

Prediction 2.615 0.913 35.037
MLP-NN Training 0.947 1.479 0.950 294.777

Validation 1.365 0.969
Test 2.353 0.918
Prediction 2.597 0.925 46.563

GR-NN Training 0.951 1.245 0.975 329.924
Validation 1.463 0.966
Test 2.084 0.950

Prediction 2.210 0.937 48.614

Table 4: Statistical results of the MLR and ANN models.
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radial layer of the GR-NN network. In the second stage, the regression 
approximation of the searched relationship is formed. Based on the 
earlier input space division by radial layer and the degree of similarity 
of the considered input signal to particular class, the decision is made 
and the result is obtained. The quality of the work of the GR-NN 5:5-
34-2-1:1 network is shown in table 4 and the predicted values were 
given in table 1. Figure 3B shows the architecture of this neural network 
with five inputs, five neurons in the first layer, 34 neuron in second 
layer (first hidden layer), two neuron in third layer (second hidden 
layer), one neuron in fourth layer and one output. The scatter plot of 
experimental vs. predicted values of RTs (min) calculated by this model 
was shown in figure 4. It was evident that the predicted values agreed 
well with experimental values. 

The statistical results of ANN models including MLP-NN and GR-

NN were listed in table 4, and all the results were in accordance with 
the criteria for a good predictive model. According to this result, it 
can be seen that the quality of the GR-NN network is better than the 
quality of the MLR and MLP-NN. In order to compare the MLR model 
with ANN, the validation and test set in ANN models were evaluated 
together. The better results of ANN models than MLR model as shown 
in table 4 demonstrated the complexity of chromatography retention 
process. Obtained results reveal the reliability and good predictivity 
of the ANN models for predicting the RTs for understudy pesticides. 
Figure 5 shows the plot of residuals vs. experimental RTs (min) for GR-
NN model. The residuals were equally distributed on both sides of zero 
line which indicates that no symmetric error exists in the development 
of our GR-NN as the best model.

Molecular descriptors 

The statistical parameters of MLR model constructed by these 
descriptors are shown in table 2. Among them, the lipophilicity 
parameter MLOGP represents the extent of hydrophilic/hydrophobic 
interactions [52]. The positive coefficient of MLOGP indicates that 
an increase in MLOGP, result in an increase in RTs values. Another 
descriptor is H6m, which was weighted by atomic mass and is belong 
to the GETAWAY descriptors [53]. GETAWAY descriptors are based 
on the representation of molecular geometry in terms of an influence 
matrix (H-GETAWAY) or influence-distance matrix (R-GETAWAY). 
The Molecular Influence Matrix (H) is defined as:

1.( . ) .−= T TH M M M M                     (6)

The mean effect of descriptor H6m has a positive sign (Table 3), 
which reveals that the RT (min) is directly related to this descriptor. 
Hence, it was concluded that by increasing the molecular mass the value 
of this descriptor increased, caused to RTs of pesticides in LC increased. 

Mor07p and Mor28m are the other descriptors, appearing in 
these models and belong to the 3D-MoRSE descriptors [53,54]. The 
3D-MoRSE descriptor is calculated using following expression:

(A)

(B)

Profile: MLP 5:5-5-1:1
Train Pref = 0.3344   Select Pref = 0.6518   Test Pref = 0.5472

Profile: GRNN 5:5-34-2-1:1
    Train Pref = 0.1358   Select Pref = 0.3904   Test Pref = 0.6936

Figure 3: Neural networks architectures used in the regression analysis. 
(A) Profile of MLP-NN 5:5-5-1:1 (B) Profile of GR-NN 5:5-34-2-1:1.
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Figure 4: Plot of experimental vs. predicted RTs (min) by GR-NN.
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Figure 5: Plot of residuals vs. experimental RTs (min) for the GR-NN 
model as the best model.

where M is the molecular matrix constituted by the centered cartesian 
coordinates and the superscript T refers to the transposed matrix. The 
diagonal elements hij of the H matrix, called leverage, encode atomic 
information and are considered to represent the effect of each atom 
in determining the whole shape of the molecule. For example mantle 
atoms always have higher  hij values than atoms near the molecule 
center. Moreover, the magnitude of the maximum leverage in the 
molecule depends on the size and shape of the molecule itself. The 
Influence-distance matrix (R) involves a combination of the elements 
of H matrix with those of the Geometric Matrix.
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where S is scattering angle, rij is interatomic distance between ith 
and jth atom, wi and wj and are atomic properties of ith and jth 
atom, respectively, including atomic number, masses, van der Waals 
volumes, Sanderson electronegativities, and polarizabilities. Mor07p 
and Mor28m display a positive sign, which indicates that the RTs are 
directly related to these descriptors. 

Finally, descriptor C005 is one of the Ghos–Crippen atom-centred 
fragments related to the methyl group attached to any electronegative 
atom (O, N, S, P, Se, halogens) fragment. It gives information about 
the number of predefined structural features in the molecule. It has 
shown negative influence on the prediction of RT-values (min). For this 
reason, RT (min) values for understudy pesticides are inversely related 
to this descriptor. 

Conclusion
In conclusion, QSRR models for estimating the RT (min) were 

developed for a series of 43 pesticides by employing the MLR, MLP-
NN, and GR-NN modeling approaches. Starting from the same set of 
descriptors included in the best MLR model, more robust models were 
obtained by the nonlinear methods of ANNs. The results obtained by 
GR-NN model were compared with those obtained by MLR and MLP-
NN models. The results demonstrated that GR-NN model was more 
powerful in predicting the RTs (min) of the pesticide compounds. A 
suitable model with high statistical quality and low prediction errors 
was eventually derived.
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