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Abstract
 Currently, the prevalence of multidrug resistance Aeromonas hydrophila is one of the major issues and 

challenges for aquatic and terrestrial organisms. Therefore, an urgent need arises to control it using a potent and 
specific drug. Here, we identified a peptide deformylase (PDF) in A. hydrophila, which is a ubiquitous enzyme and one 
of the most attractive drug targets. We used the PDF protein sequences for generating a 3-D model using homology 
modeling. The 3-D model was validated and it was found 91% of the present amino acids in allowed regions of the 
Ramachandran plot. We used the 3-D model of PDF for the screening of drugs through molecular docking and found 
BB-3497, actinonin, and BBS-02 were more potent than other studied drugs based on binding energy. We have also 
generated a phylogenetic tree of PDF from A. hydrophila with other homologous bacteria, suggesting that similar 
drugs could also be applied to the control of those bacteria. These findings provide a new insight for the better 
understanding of PDF, which is a novel target for the development of more potent inhibitors towards the better control 
of multidrug resistant A. hydrophila. 
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Introduction
Aeromonas hydrophila causes a wide range of diseases including 

soft tissue infection and diarrhea in humans, while also causing 
hemorrhagic septicemia, and tail and fin rots in aquatic animals [1,2]. It 
secretes a number of enzymes and proteins (are also known as virulence 
factors) such as proteases, elastase, lecithinase, lipase, chitinase [3-5], 
cytotoxic enterotoxins [6], and hemolysins [7-10]. It plays a vital role 
in causing a high rate of mortality in aquaculture and great economical 
losses to fish farmers. A. hydrophila is also capable of contaminating 
food products due to its growth and the secretion of toxins material 
into the foods. A variety of foods used in our daily life as well as their 
derivatives can be affected, including fish, seafood, chicken, milk and 
dairy products, raw and cooked meats and others, all of which are not 
considered to be safe for eating following contamination. In 2009, a 
disease outbreak was reported concerning the infection of A. hydrophila 
in 48 farms of catfish in West Alabama with more than 3 million pounds 
of losses [11]. A recent outbreak has been reported in goldfish due to 
the infection of Cyprinid herpes virus-2 and multidrug resistant A. 
hydrophila in India [12]. Therefore, an urgent need arises to accurately 
detect and control the further spread of A. hydrophila into new areas. 
Over the past three decades, the polymerase chain reaction (PCR) has 
received a more attention for its use in the rapid, sensitive, and specific 
diagnosis of pathogens from a wide range of organisms. A. hydrophila 
was isolated from different organisms and confirmed by the PCR assay 
of variety of genes including aerolysin, hemolysin, lipase, and protease 
[13-18]. Nam and Joh [19] detected aerolysin (aer), GCAT (gcat), serine 
protease (ser), nuclease (nuc), lipase (lip), and lateral flagella (laf) genes 
in Aeromonas species. Even though accurate diagnostic can be made, 
we still need to control A. hydrophila within fish and water samples. 
Currently, antibiotic resistance is one of the major global issues for 
animal and human health [20,21]. There is currently an increasing use 
of antibiotics, which at the same time is also promoting the spread and 
evolution of antibiotic-resistant bacteria. In general, as we target to kill 
pathogenic bacteria, if they are not all killed, survivors can develop 
enhanced resistance over time and multiply, strengthening the pool 

of bacteria. Therefore, with the repeated uses of the same antibiotics, 
bacteria can potentially develop complete resistance against them [22]. 
In the previous study, 34 A. hydrophila isolates were collected from 
diverse locations and it was observed that all of the strains were resistant 
to ampicillin, carbenicillin, and rifampicin [23]. In addition, 234 isolates 
of A. hydrophila were tested in an antibiotics assay and it was found 
more than 90% of isolates were resistant to tetracycline, trimethoprim-
sulfamethoxazole, and cephalosporins [24]. Furthermore, it was 
also found that Aeromonas isolates showed resistance to gentamicin, 
chloramphenicol, ciprofloxacin, and cotrimoxazole [25]. In addition, a 
total of 25 A. hydrophila isolates from fish and water samples have been 
tested for antibiotic sensitivity and it was found that all of these isolates 
were resistant to cephalothin, ampicillin, novobiocin and nitrofurazone 
[26]. Antibiotic resistance genes are commonly derived from plasmid, 
and so commonly have multiple copies and with the capability for 
autonomous transfer into microbial populations [27]. Potentially 
the build-up of resistance over time may have also occurred due to 
evolutionary adaptation and random mutations in genes within strains, 
as well as through excessive and poor use of antibiotics. There are 
more than 200 essential and conserved target proteins present within 
bacteria, but only a small proportion of these are currently exploited 
[28]. There is consistent need to identify a conserved and novel target 
for the control of A. hydrophila. The availability of the complete genome 
sequence of A. hydrophila has allowed us to identify a target for drug 
design and development [29]. The sensor histidine kinase identified 
in A. hydrophila has been suggested to be a good target and useful 
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for novel drug discovery [30]. In addition, a DNA gyrase, an enzyme 
essential for DNA replication in A. hydrophila has been used for 
targeting using a number of antibiotics for control of cell growth [31]. 
Peptide deformylase (PDF) is a metalloenzyme and one of the most 
attractive targets for controlling of A. hydrophila growth [32]. Study of 
the sequence homology of A. hydrophila PDF shows that it is absent 
in eukaryotic life forms and therefore it is suitable for use as a target 
without the potential of biological cross talk [33,34]. The biosynthetic 
pathway can be blocked using potent antibiotics or drugs that could be a 
specific to the pathogen [35,36]. In order to target PDF, a need arises for 
either a 3-dimensional structure or a valid model. Homology modeling 
plays a key role in the generation of the 3-D model using the known 
3-D crystal structure [37]. It requires protein sequence homology that 
should be higher than 25%; thereafter we would be able to generate a 
3-D model. Currently, there is no 3-D structure of PDF of A. hydrophila 
available yet. The homology modeling was used to generate a 3-D model 
of hemolysin and aerolysin of A. hydrophila [10,38]. Recently, Fazil et al. 
[39] used homology modeling for generating a 3-D model of histidine 
kinase of A. hydrophila. In addition, DNA gyrase has also been modeled 
for targeting with several drugs and used for the design of novel drugs 
[31]. In order to control multidrug resistance and excessive use of 
antibiotics, phylogeny analysis can play a vital role in the identification 
of an evolutionary and genetic relationship of A. hydrophila with 
other bacteria. The phylogenetic relationship has been established for 
Aeromonas species based on the sequence of the β-subunit of DNA 
gyrase. In addition, they have also used 16S rDNA variable regions 
for genetic relationship analysis [39]. A number of proteins sequences 
such as hemolysin, aerolysin and DNA gyrase of A. hydrophila have 
been used for phylogenetic analysis [10,31,38]. The housekeeping 
genes rpoD and gyrB are important for cell activity, and can be used 
to construct a phylogeny [40]. In the present study, we construct a 3-D 
model for peptide deformylase of A. hydrophila that could be used for 
the screening of potent drugs using molecular docking. Additionally, 
we generated a PDF based phylogeny of A. hydrophila, along with other 
bacteria.

Materials and Methods
Homology modeling of peptide deformylase 

We have retrieved the protein sequences of peptide deformylase 
(NCBI accession number: KER65290) of A. hydrophila and other 
bacteria from National Center for Biotechnology Information, 
NIH, US (www.ncbi.nlm.nih.gov). PDF was further used for finding 
structural similarity with deposited protein data bank 3-dimensional 
structures through BLAST, (basic local alignment search tool) [41]. It 
shows the structural similarity with 1N5N that was pair wise aligned 
using CLUSTALX [42]. We used the X-ray crystal structure of peptide 
deformylase of Pseudomonas aeruginosa as a template for generating 
the 3-D model of the PDF of A. hydrophila. The resolutions of X-ray 
crystal structure of peptide deformylase of P. aeruginosa was 1.80 Å. A 
total of five 3-D models of PDF of A. hydrophila have been generated 
using Modeller9v2, all of which have been further evaluated on the 
basis of lowest free energy of the models and the template [37]. These 
3-D models were visualized using the PYMOL [43]. They were further 
evaluated using a PROCHECK that has also generated a Ramachandran 
plot [44]. The quality of the 3-D model shows maximum number of 
amino acids present in the allowed region of the Ramachandran plot. 

Screening of potent drugs and phylogenetic analysis 

We have taken drugs from NCBI PubChem compound in the 
SDF format, and these were further converted into 3-D models using 

OpenBabel. The 3-D model of PDF and the 3-D model of drugs were 
used for the screening of potent drug using the molecular docking 
tool AutoDock 4.2.3 [45]. We have considered docking parameters 
including random starting position and conformational translation 
step ranges of 1.5 Ǻ, rotation step ranges of 35, 100 docking trials, a 
population size of 150, a cross over rate of 0.8, a mutation rate of 0.02, 
25 million energy evaluations, and a local search rate of 0.06 [31,46]. 
Here we could choose correct docking sites based on the minimum 
docked energy between the PDF and the drug molecules. In order to 
construct a phylogenetic tree, the protein sequence of PDF from A. 
hydrophila has been used to find homologous protein sequences in 
other bacteria using BLASTP. We retrieved all homologous protein 
sequences and aligned them with the CLUSTALX [42]. Subsequently, 
we studied the aligned file within the MEGA4 software using passion 
correction equation [47]. We used the neighbor-joining method for 
construction of the phylogenetic tree with a total of 100 bootstrapped 
values, which was sampled to determine a measure of the support for 
each node on the consensus tree.

Results and Discussion
Risk assessment of multidrug resistance A. hydrophila 

Currently, interest in the awareness of the health benefits and 
nutritional value of diets including fish consumption has been 
significantly increasing. Fish is an important source of low fats and is 
rich in proteins, which can be extensively assist immunity, and prevent 
infection and cardiac diseases [48,49]. However, A. hydrophila is a 
major threat for fish farming and stocking. It can spread rapidly into 
new areas and infect other fish and fish stocks. Therefore, aquaculture 
systems are facing a plethora of issues such as over-catching, disease 
outbreaks, exchanging of stock, preserving of stock, and the dumping 
of untreated industrial waste into freshwater water bodies [50,51]. In 
order to manage and control of A. hydrophila infection and spreading, 
we would need to use a modern approach to overcome the current 
issues of fish farming and stocking. 

Antibiotics are currently used for the control of A. hydrophila 
infection in a wide range of organisms including fish, animals, 
amphibians, chicken, and mammals. In the previous study, A. 
hydrophila shows resistant to several antibiotics including novobiocin, 
ampicillin, cephalothin, and nitrofurazone while remaining sensitive 
to gentamicin (80%), co-trimoxazole (92%), chloramphenicol, and 
ciprofloxacin [26]. In addition, A. hydrophila isolated from rifampicin 
containing medium could help the development of attenuated vaccine 
for fish [52]. Very recently, a multidrug resistant A. hydrophila has been 
isolated from goldfish. It shows resistance against a number of antibiotics 
including amoxyclav, ampicillin, azetreonam, ceftazidime, cefuroxime, 
cephalothin, cephotaxime, cloxacillin, imipenem, lincomycin, 
methicillin, oxacillin, penicillin, sulphatriad, and vancomycin [12]. 
Multidrug resistance is currently an important global challenge and a 
major issue for the control of microbial infections. It is assisted through 
changes in the gene, over-dosing of antibiotics, or simply the misuse of 
antibiotics. Microbes are constantly adjusting within stressful condition 
and have survived by changing their physiological conditions [22]. 
Therefore, the current antibiotics are not potent and sufficient to treat 
A. hydrophila infections. 

The 3-D modeling of peptide deformylase

We have identified a novel drug target peptide deformylase in the 
genome of A. hydrophila after the complete genome sequencing [29]. 
Currently, the 3-D structure of PDF is not determined. The protein 
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sequences of PDF were 51% homologous with 3-D structure similarity 
of deformylase of P. aeruginosa (PDB code 1N5N). Therefore, we used 
a homology modeling approach to build the 3-D model using the 
known 3-D crystal structure. Both the protein sequences of peptide 
deformylase of A. hydrophila and P. aeruginosa (PDB: 1N5N) were pair-
wise aligned (Figure 1). The asterisk represents the identical amino 
acids. The 5 3-D models have been generated by Modeller9v6, and it 
was found that the Gibbs free energy of the peptide deformylase of A. 
hydrophila was very similar to its template. The 3-D model of peptide 
deformylase of A. hydrophila was shown in Figure 2a and it retains 
alpha-helix as well as beta-sheets in the model. The Ramachandran 
plot (RP) for peptide deformylase of A. hydrophila was also determined 
(Figure 2b), and represents in the allowed and disallowed regions of 
the amino acid residues 91% and 1.6%, respectively. All the above 
properties of peptide deformylase satisfied the need for good quality of 
the 3-D model. The previous study also supported our data regarding 
the quality of the 3-D model and the amino acids present in allowed 
region of the Ramachandran plot [10,31,38]. 

A number of drugs have been used for binding with PDF, however, 
mutation and low efficacy reduced the binding affinity, inhibiting better 
control of A. hydrophila. Single mutations in a gene can change the 
active amino acid residue, which may play a key role in binding with the 
drug. Therefore, a drug that has not been strongly bound with amino 
acids can lead to the appearance of drug resistance [53,54]. To address 
this issue, we used the 3-D model of PDF for the screening of potent 
drugs that can be further used for the control of A. hydrophila infection 
in different animals. 

Screening of potent drugs and phylogenetic analysis

In the present study, we have identified six drugs and used these 
for molecular docking against the entire 3-D model of peptide 
deformylase. A total of 10 docking experiment have been performed 
with the entire 3-D model of peptide deformylase, which is considered 
the lowest free energy of the docked complex with hydrogen bonds. 
We found BB-3497, actinonin, and BBS-02 show the highest binding 
affinity as represented by docking energy. The docking energy of BB-
3497, actinonin, and BBS-02 were -19.24, -19.85, and -19.24 kcal/
mol, respectively (Table 1). A number of amino acids residue in the 
3-D model of PDF during the interaction with the drug were given 
in Table 2. Amino acid residues including Glu36, Arg67, Ile60, Ile61, 
Tyr39, Gly44, Asn43, Asp62, Ala40, and Ile45 in the 3-D model of 
PDF of A. hydrophila were observed with the interaction of BB-3497 

molecule. The drug was bound with these amino acids of PDF (Figure 
3). In the case of actinonin, a number of amino acids such as Arg67, 
Glu36, Asp62, Ala40, Leu63, Ile61, Ile60, Gly44, and Tyr39 in PDF of 
A. hydrophila were observed (Figure 4a). It also formed a hydrogen 
bond between actinonin and amino acids, via the UNK0:H-Asp62:OD2 
atoms with a distance 2.077 Å (Figure 4b). BB-3497 and actinonin 
are potent inhibitors of PDF and are able to control cell activity of 
Escherichia coli [36,55]. The effectiveness of actinonin against PDF of 
E. coli and Staphylococcus aureus has been further tested and it has 
been found that similar concentrations could control the growth of 
both bacteria [35]. Molecular docking has been used for the screening 
of potent drug molecules by targeting the aerolysin of A. hydrophila 
[38] and 3-oxoacyl-acyl carrier protein synthase II of Mycobacterium 
tuberculosis [56]. Sharma et al. [57] have tested BB-3497 and actinonin 
and both were found to be potent drugs against the PDF of M. 
tuberculosis at low concentrations. While in the case of interaction of a 
BBS-02 molecule with PDF, a number of amino acids including Tyr39, 
Ile45, Gly46, Gln51, Leu92, His137, Glu134, Cys91, Gly90, Ile120, and 
Leu92 were obtained (Figure 5a). This also showed three hydrogen 
bonds (HB) between UNK1:H-Gln51:OE1, UNK1:H-Gln51:NE2, and 
UNK1:H-Leu92:N atoms with 2.214 Å, 1.910 Å and 2.168 Å distances, 
respectively (Figure 5b). In a relevant study, a peptide deformylase in 
M. tuberculosis was identified and used in molecular docking for the 
screening of a wide range of inhibitors. They have found BB-3497, BBS-
54, actinonin, and BBS-02 were potent inhibitors against PDF [58]. In 
our study, we tested A. hydrophila and found that BB-3497, actinonin, 
and BBS-02 are potent drugs, expanding beyond other studied drugs 
such as BBS-54, BBS-88, and BBS-52. These potent drugs can be applied 
to the control of A. hydrophila infections. The phylogenetic tree holds 
a key to solving some of the genetic relationship issues by building a 
phylogeny based on peptide deformylase of A. hydrophila and other 
bacteria those have homologous PDFs (Figure 6). Until now, there 

Figure 1: Pairwise alignment of peptide deformylase (PDF) sequences of A. hydrophila with template crystal structure 1N5N sequence. The asterisk (*) 
indicates the identical amino acids.

Drugs Binding energy
(kcal.mol-1)

Docked energy
(kcal.mol-1)

Inter molecular energy
(kcal.mol-1)

BB-3497 -18.32 -19.24 -19.56
BBS-54 -14.36 -14.76 -14.98

Actinonin -18.81 -19.85 -20.68
BBS-02 -13.63 -14.39 -14.87
BBS-88 -7.45 -8.16 -8.7
BBS-52 -13.16 -13.38 -14.71

Table 1: The interaction energy of peptide deformylase of A. hydrophila and drugs. 
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Protein 
name Amino acids in PDF Drugs Interaction of PDF and drugs Distance of hydrogen bonds 

(Ǻ)

PDF Glu36, Arg67, Ile60, Ile61, Tyr39, Gly44, Asn43, Asp62, Ala40, 
Ile45 BB-3497 NDa NDa

PDF Arg67, Glu36, Asp62, Ala40, Leu63, Ile61, Ile60, Gly44, Tyr39 Actinonin UNK0:H-Asp62:OD2 2.077

PDF Tyr39, Ile45, Gly46, Gln51, Leu92, His137, Glu134, Cys91, Gly90, 
Ile120, Leu92 BBS-02

UNK1:H-Gln51:OE1
UNK1:H-Gln51:NE2 UNK1:H-

Leu92:N

2.214
1.910
2.168

a Not detected

Table 2: The amino acid residues and hydrogen bond formed between the drugs and PDF. 

(a) (b)
Figure 2: (a) The 3-D model of peptide deformylase of A. hydrophila. (b) Ramachandran plot for peptide deformylase and 91.0% amino acids in allowed 
region (red region). 

Figure 3: Interaction of BB-3497 drugs with PDF. 
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has been no phylogenetic tree that has been constructed for the PDF 
of A. hydrophila. This is our approach to identify the PDF targets in 
other bacteria based on protein sequences homology that allows us 
to treat those bacteria with similar drugs towards better control of 
the misuse of drugs and/or avoiding the development of multidrug 
resistance. A total of 3 major clades were formed, clades A, B and C. A. 
hydrophila presented in clade B in between the phylogeny. It indicates 
that the similar antibacterial drugs such as BB-3497, actinonin, and 
BBS-02 can be used to inhibit the peptide deformylase activity. In 
clade A, it shows different species of Vibrio while in clade C, all other 
bacteria are present. Vibrio species were also close with Aeromonas 
species; the same drugs may be helpful for the inhibition of peptide 

deformylase function towards control of infection and spreading of 
these bacteria. The phylogeny indicates that the peptide deformylase 
is a stable and potential drug target for A. hydrophila and V. cholerae. 
The housekeeping genes such as rpoD and gyrB of A. hydrophila have 
been used for constructing a phylogenetic tree and they established the 
genetic relationship among Aeromonas species [40,59]. In addition, 
Küpfer et al. [60] have used gyrB and rpoB sequences for construction 
of phylogeny of Aeromonas species. In a relevant study, a phylogenetic 
tree has been constructed using the aerolysin and hemolysin protein 
sequences of A. hydrophila and they have identified a similarity among 
Aeromonas species and other pathogenic bacteria [10,38]. 

Figure 4: Interaction of actinonin with 3-D of PDF, showing a hydrogen bond. (a) Active pocket of amino acids interact with actinonin (b) Asp62 shows the HB with 
actinonin.

Figure 5: Interaction of BBS02 with 3-D of PDF, showing a hydrogen bond in green color. (a) Active pocket of amino acids interacts with BBS02 and (b) Gly51 and 
Leu92 shows the HB with BBS02. 
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Conclusions
We have built a 3-D model for peptide deformylase of A. hydrophila 

based on a known 3-D crystal structure. It was used for the screening of 
effective and potent drugs using a molecular docking approach and it 
was found that BB-3497, actinonin, and BBS-02 show a strong binding 
affinity towards PDF. It indicates that it can be further used for the 
control of A. hydrophila without further misuse or superfluous use of 
drugs to help avoid multidrug resistance. Phylogeny provides a better 
insight into the understanding of the evolutionary relationship and can 
be useful for the control of other bacteria with the same drug towards 
the control of infections. A need arises to use those drugs for in vitro 
test against A. hydrophila to validate efficacy and dose for future use 
against this important pathogen.
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