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Introduction
Stroke survivors exhibit a wide range of sensory and motor 

impairments. These impairments result in disabilities that limit 
performance of daily activities [1]. While rehabilitation is important to 
regain function after stroke, assessment of the initial impairment is an 
essential first step. Accurate assessment of the nature and magnitude of 
impairment is beneficial both on an individual level, to determine the 
appropriate course of treatment, and also on a broader scale to guide 
the development of novel rehabilitation approaches [2].

The majority of assessment tools used for the upper limb 
examine single limb function, evaluating task performance in one 
limb or the other [3-7]. These tools have provided valuable insight 
into sensorimotor impairments following stroke, often categorizing 
the performance of the affected limb and, in some tasks, contrasting 
affected with unaffected limb performance [5]. However, we often 
need to use both limbs in a coordinated manner to perform tasks (i.e., 
opening a jar or balancing items on a tray held with both hands). In 
a survey of post-stroke individuals, 90% of patient-selected recovery 
goals included dressing, washing and eating/drinking, and over one-
third of these tasks involved the use of both hands [8]. Moreover, in two 
recent studies that tracked limb use in daily life post-stroke, it was found 
that the affected limb was used almost exclusively in bimanual tasks 
(vs. unimanual) [9] and increased bimanual use was associated with 
better performance on instrumental activities of daily living [10]. These 
findings emphasize the need for current assessment and rehabilitation 
protocols to consider bimanual movements.

Many rehabilitation strategies include a bimanual component, in 
part to improve bimanual function, but also with the hope that the 
intact neural circuitry in the contralesional (unaffected) hemisphere 
will improve neural function in the ipsilesional hemisphere [11,12]. 
However, the efficacy of bimanual therapy is controversial [13]. In the 
short term, some studies have found that bimanual movements do 
not improve the movement of the affected limb, and at times actually 
decrease performance in the unaffected limb [14-16]. Although motor 
performance on the specific bimanual training task itself may improve 
[17] this improvement does not always extend to performance of
functional bimanual tasks [18,19]. These divergent results necessitate
an improved understanding of bimanual impairments following stroke, 
starting with accurate assessment of bimanual control.

Previous evaluations of bimanual impairments post-stroke have 
focused on the ability of the limbs to move with similar metrics towards 
relatively independent goals. For example, tasks include reaching 
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Background: Bimanual tasks are integral to the performance of many activities of daily living, but impairments in 

bimanual coordination following stroke are not well quantified with existing clinical tools.

Objective: The current study outlines a novel robotic task for the objective and quantitative assessment of 
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both arms towards single or dual targets [15,16,20,21], symmetric 
force production with both arms [22] or simultaneously drawing 
concentric circles [19]. While these tasks allow a measurement of 
synchrony or symmetry in the behaviour of each hand, they lack the 
added complexity of coordination of the two hands towards a common 
goal. In many functional tasks, the limbs are required to work together, 
including opposing a motion applied by one limb with the other. A few 
studies have quantified impairments on more coordinated, functional 
tasks such as pouring/drinking from a glass or opening a jar [18,23]. 
However the unconstrained nature of these tasks requires 3D motion 
capture to evaluate movement metrics, which is complex and time 
consuming [18]. In addition, the use of these functional tasks necessarily 
excludes patients with severe motor impairments who cannot perform 
the task at all [23]. An ideal assessment tool should be quick and easy to 
administer, repeatable, continuous and captures performance of a wide 
range of impairment with minimal floor or ceiling effects.

To that aim, we have developed a multi-level robotic task to assess 
bimanual function. Robotic technology provides an objective approach 
to quantify sensory and motor function of the upper limb [5-7,24-26]. 
The basic bimanual task involved a circular ball located on a bar that 
virtually connected the two hands. The task objective was to move the 
ball to illuminated targets and task difficulty was modified by altering 
the relationship between the ball and bar (from fixed to ball rolling 
on the bar). Multiple targets allowed assessment across a range of the 
work space and multiple levels of difficulty modified the challenge and 
thus skill required to perform the task. The goal was to assess various 
aspects of performance: task success parameters indicated how well 
participants achieved the task goal, whereas movement parameters 
quantified deficits in bimanual coordination. We hypothesized that 
participants with stroke would be less successful in achieving the task 
goal compared to a healthy control population, and that we would 

identify underlying deficits in movement parameters that indicate 
decreased bimanual coordination. In addition, we hypothesized that as 
the task increased in difficulty (higher levels) we would identify more 
participants with impairments. 

Method
Participants

Stroke participants were recruited from the inpatient acute stroke 
unit and stroke rehabilitation units at Foothills Medical Centre and 
the inpatient stroke rehabilitation units at Dr. Vernon Fanning Care 
Centres in Calgary, Alberta and St. Mary’s of the Lake Hospital in 
Kingston, Ontario. Control participants were recruited from the 
Kingston community. Participants with stroke were included in the 
study if they had a confirmed diagnosis of stroke, were older than 18 
years of age, and could understand the task instructions. Participants 
were excluded if they had significant medical comorbidities (e.g. angina 
or active cardiac disease), had a previous stroke, or other neurologic or 
musculoskeletal diagnoses affecting their upper limbs. All participants 
provided informed consent prior to participation in the study. Ethical 
approval was provided by Queen’s University and the University of 
Calgary. 

Clinical examinations

Clinical evaluations of participants with stroke were administered 
by a physical or occupational therapist and included the Edinburgh 
Handedness Inventory for hand dominance as well as the Montreal 
Cognitive Assessment (MoCA) for assessment of cognitive impairment 
[27]. The conventional subtests of the Behavioural Inattention Test 
(BITc) were performed. The BITc consists of a variety of pencil and 
paper tests (e.g. line bisection, letter cancelation) to screen for the 
presence of visual neglect [28]. The test is scored out of 146 and a value 
of 129 or below is indicative of visual neglect. The Modified Ashworth 
Scale was used to evaluate spasticity at the elbow[3]. The Chedoke-
McMaster Assessment of the arm (CMSAa) and hand (CMSAh) was 
used to assess the upper limb on a 7-point scale reflecting stages of 
motor recovery following stroke (7–highest recovery stage, 1–lowest 
recovery; [4]). The Functional Independence Measure (FIMTM) was 
used to rate physical and cognitive disability and level of assistance 
required, intended to measure the burden of care [29]. The motor 
portion (FIM motor) measures functional ability, such as washing, 
dressing, toileting and mobility. The cognitive portion (FIM cognitive) 
evaluates comprehension, expression, social interaction, problem 
solving and memory. 

Approximately 15-20% of stroke survivors that experience unilateral 
brain lesions also exhibit mild impairment of their ipsilesional limb 
[5,30]. The affected side of participants with stroke was characterized 
using their CMSA scores, and in the current study the affected side 
reflects the upper limb that was most affected (contralesional limb).

Robotic set-up	

All experimental tasks were performed in the KINARM robotic 
exoskeleton (BKIN Technologies Ltd., Kingston, Ontario). The robot 
measures kinematics of the shoulder and elbow and can apply joint-
or hand-based loads [31]. Full details of the robotic set-up have 
been described previously [5]. Briefly, participants were seated in a 
modified wheelchair base with the feet in adjustable rests and arms 
fully supported in exoskeleton robots with their shoulder and elbow 
joints aligned with the linkages of the robot (Figure 1A). The seat 
height was adjusted for each participant to achieve shoulder abduction 
(~85°). Plastic arm troughs within the frame were adjusted to support 

A
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Figure 1: A) Participant set-up in the KINARM robotic exoskeleton. Task 
is presented in the horizontal plane to correspond with hand motion.  B) 
Visual representation of task workspace. Virtual bar connects the hands and 
participants move the ball in the direction of the arrows as the targets are 
illuminated. (Note: hands are shown for visualization but hands and arms are 
occluded from view).
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the upper arm and forearm/hand. This allowed free arm movement in 
the horizontal plane. The robot was calibrated for each participant and 
the arms and hands were occluded from view. A virtual reality system 
projected visual targets and visual representation of fingertip location 
(as a virtual bar linking the two hands) on the screen in the same plane 
as the arm. 

Task characteristics

In the current task, a 30 cm virtual ‘bar’ (1 cm thickness) was 
displayed connecting the index fingers of each limb (Figure 1B). The 
robot modelled the bar (mechanically and visually) as a stiff spring 
creating repulsive/attractive forces aligned with the bar when the 
hands moved it from its default length to maintain the bar length at 
30 cm. A virtual ball (1 cm radius) rested on the middle of the bar and 
participants were instructed to move the ball ‘quickly and accurately’ to 
four circular targets (1cm in radius) as they appeared on the screen. The 
four targets were located 10cm from a centrally located origin (Figure 
1B). A gravitational constant acted on the virtual environment so that 
participants felt the ‘weight’ of the bar and the ball in the frontal plane 
(bar mass: 0.166 kg; ball mass: 0.4 kg).

Task objectives

Participants were required to use the bar to move the ball to 
successive targets appearing clockwise around the work space. The 
targets appeared red, signalling ‘go’ and once the ball entered the target, 
and it turned yellow. Participants had to hold the ball in the target for 
1second, after which the next red target appeared. It was more difficult 
to maintain the ball within the target circle as task difficulty increased. 
Therefore, the size of the acceptance window (initially 1 cm radius) 
within which participants had to hold the ball for 1 second increased 
by 1cm/s, although the visual radius of the target remained constant. 
This ‘logical radius’ was included after pilot testing to decrease the 
task difficulty but still encourage accurate placement of the ball within 
the target. The task included 6 levels that increased in difficulty by 
modifying the relationship between the ball and the bar:

Level 1: Ball fixed to center of bar. 

Level 2: Ball moved along bar as a function of bar tilt. The greater 
the tilt the further the ball moved. The ball fell off when the bar tilted ≥ 
20° relative to the frontal plane. 

Levels 3-6: Ball had the ability to ‘roll’ with no friction on the bar. 
Ball rolled faster with each increase in level (Supplemental File).

The overall goal of the task was to successfully reach as many targets 
as possible within one minute (1 min per level, total task time=6 min). 

Data processing and analyses

Kinematic data were recorded for the ball and hands (position 
and velocity) and were sampled at 1000 Hz using Dexterit-E software 
(BKIN Technologies Ltd., Kingston, Ontario). Data were digitally 
filtered offline with a 4th order dual-pass, Butterworth low pass filter, 
with a cut-off frequency of 10 Hz using Matlab (The MathWorks Inc., 
Natick, MA, USA). For each level, 14 parameters were calculated from 
the kinematic data, reflecting overall task performance, metrics of 
hand and ball movement and bimanual coordination of movements 
throughout the task.

Task parameters

Task success parameters:

i.	 Hits: Number of successful targets hit.

ii.	 Drops: Number of times the ball fell off of the bar. Drops were 
only possible in Levels 2-6 as the ball was fixed in Level 1.

iii.	 Hits/Drop: Number of hits divided by the number of ball drops 
(only possible for Levels 2-6).

Hand and Ball Parameters

i.	 Reaction time + Movement time (RT+MT): Overall time 
elapsed from when target appears to when ball reaches target. 

ii.	 Ball speed: Mean ball speed over the entire level.

iii.	 Hand speed: Mean hand speed over the entire level.

iv.	 Hand speed peaks: Number of hand speed maxima recorded 
over the entire level.

Bimanual Parameters

i.	 Absolute Tilt: Absolute angle of the bar relative to frontal plane 
and then averaged over the entire level (°).

ii.	 Reaction time difference (RT diff): (Level 1 only). An algorithm 
was used to identify movement onset for each limb. First, 
the algorithm identified the time point when the ball moved 
10% of the distance to the next target, then movement onset 
was defined by searching back in time to the next hand speed 
minimum. Reaction time (RT) was defined as the time elapsed 
from target illumination to movement onset. Absolute RT 
Difference was computed for each movement and averaged 
over the entire level.

iii.	 Change in bar length: Identified if the subject compressed or 
lengthened the bar throughout the task. Absolute change from 
the resting length of the bar was computed at each time step 
and averaged over the entire level.

iv.	 Difference in hand speed: The cumulative sum of the absolute 
difference in speed between the two hands identified at each 
time point over the entire level.

v.	 Difference in hand speed peaks: Difference in the number of 
speed peaks recorded for each hand over the entire level. 

vi.	 Difference in hand path length: Difference in the total hand 
path calculated for each hand over the entire level. 

For difference parameters of hand speed peaks and path length, 
the difference was calculated as the performance of the affected limb 
subtracted from the unaffected limb for participants with stroke, and 
the non-dominant limb subtracted from the dominant limb for control 
participants. Thus positive values reflect lower values for the affected 
(stroke) or non-dominant (control) limb, and negative values reflect 
lower values for the unaffected (stroke) or dominant limb (control).

Statistical analyses
Statistical analyses were performed in Matlab (The MathWorks Inc., 

Natick, MA, USA).The data were age-regressed and Box Cox transforms 
[32] were used to normalize control distributions. Participants with 
outliers in any parameter were removed from all analyses for that level. 
Parameters were then assessed for sex effects. Percentiles were calculated 
for each parameter and used as cut-off values for comparing individual 
stroke performance. For one-tailed comparisons, 5th or 95th percentiles 
were used where appropriate, and for two-tailed comparisons, 2.5 
and 97.5 percentiles were used to determine when stroke participant 
performance fell outside of 95% of controls. Correlations between 
the number of parameters failed on the task and clinical scores were 
performed using Spearman’s rank correlation. 
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Results
Participant demographics and clinical scores

Data were collected for 75 control (41 Female) and 23 stroke 
participants (9 Female; Table 1). The stroke participants consisted of 
more left (n=18) than right affected participants (n=5). The type of 
stroke was primarily ischemic (21/23) and days post-stroke varied from 
1–46 days with the following distribution: ≤ 1week post stroke (n=7), 
1-3 weeks (n=6), 3–6 weeks (n=8),>6 weeks (n=2; 43 and 46 days). 

Clinical scores show a range of impairment. FIM motor scores 
(Table 1) ranged from 37 to 126. BIT scores ranged from 100-146, with 

3 participants scoring below the cut-off of 129, indicating the presence 
of visuospatial neglect (28-Wilson et al., 1987). CMSA scores ranged 
from 1-7 with 16/22 participants scoring 6 or below for the affected arm 
and 19/22 scoring 6 or below for the affected hand. For the unaffected 
limb, scores ranged from 5-7 with 8/22 participants scoring 5 or 6 for 
the arm and 5/22 participants scoring 6 for the hand indicating that 
36% of our participants had mild ipsilesional arm impairment and 22% 
had mild ipsilesional impairment in the hand. Five of the 6 participants 
with ipsilesional hand impairment also exhibited ipsilesional arm 
impairment. All participants with ipsilesional upper limb impairment 
were more impaired on their contralesional side, scoring at least 
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Figure 2: Hand and ball path traces from exemplar participants, for Level 1. A) Traces from a 72 year old control participant. Solid black lines represent hand 
path of each hand and dotted line represents the path of the ball. At this level, the ball is coupled to the hand path as it is fixed to the bar linking both hands (i.e., 
ball represents the mid-point of the distance between both hands).  Note: traces would normally overlap but are separated for illustrative purposes. Far right plots 
represent hand speed for the left and right hands overlaid for multiple reaches to each target. Dotted line represents the time point when the target was illuminated. 
B) Traces from a left-affected stroke participant (68 years old) with a lesion in the right middle cerebral artery (MCA) assessed 26 days post-stroke. This participant 
scored 7/7 for left (affected) arm CMSA and 4/7 for right (unaffected) arm CMSA.  C) Traces from a right-affected stroke participant (78 years old) with a lesion in 
the left MCA assessed 12 days post-stroke. This participant scored 2/7 for right (affected) arm CMSA and 6/7 for left (unaffected) arm CMSA.  

Participant Group Stroke   (n = 23) Control   (n = 75)
Age   mean (range) 61 (26-87) 53 (18-87)

Gender 9 F/14 M 41 F/34 M
Handedness 2 LH/21 RH 8 LH/67 RH
Affected Side 18 LA / 5 RA -

Days Since Stroke 20 (1–46) -
Type of Stroke (I/H) 21/2 -

BIT 138 (100–146) (n=21) -
MoCA (/30) 25 (19–30) (n=19) -

CMSA (possible ratings) [1,2,3,4,5,6,7]
Arm    Affected [0,4,2,2,4,4,6] (n=22) -

           Unaffected [0,0,0,0,3,5,14] -
Hand  Affected [1,2,1,1,6,7,4] -

           Unaffected [0,0,0,0,0,5,17] -
FIM (cognitive /35) 32 (20-35) -

FIM (motor /91) 77 (17-91) -

FIM (total /126) 109 (37-126) -

Abbreviations: F/M: female/male; LH/RH: left/right-handed; LA/RA: Left/ Right Affected
I/H: Ischemic/Hemmorrhagic; C/SC/B/Cr/M/U: Cortical/Sub-cortical/Brainstem/Cerebellum/Mixed/Unknown; BIT: Behavioural Inattention Test; MoCA: Montreal Cognitive 
Assessment; CMSA: Chedoke-McMaster Stroke Assessment; FIM: Functional Independence Measure

Table 1: Clinical and demographic data
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one Level lower on the CMSA. MoCA scores were recorded for 19 
participants and ranged from 19-30 with a mean of 25.

Bimanual robotic task: LEVEL 1
General participant performance: Overall, participants with 

stroke had impaired performance on the bimanual task compared to 
control participants. Exemplar participant hand and ball trajectories for 
Level 1 indicate that control participants moved their hands relatively 
straight as they progressed to each target with minimal corrective 
movements (Figure 2A). Movements were consistent from trial to trial, 
with low variability in successive reaches to targets. Patterns of hand 
motions are similar to movements of the ball.

In contrast movements of an exemplar left-affected participant 
(Figure 2B) and right-affected participant (Figure 2C) were variable 
from reach to reach. Both participants showed less movement area 
and smaller path lengths with their affected limb. In particular, for the 
right-affected participant, the right hand moved back and forth with no 
‘diamond’ shape to the trajectory. In general participants with stroke 
hit fewer targets and moved more slowly from target to target but with 

more speed peaks (i.e. jerky, less smooth movements: right panels, 
Figure 2).

Performance of healthy controls: Statistical analyses identified 
which of the parameters were influenced by age and/or sex. Age effects 
were found for path length difference and RT diff in Level 1, and sex 
effects were found for bar length changes and hand speed peaks (affected 
and unaffected). These factors were taken into account when calculating 
percentiles for the normative ranges for control performance. 

Performance of stroke participants on individual parameters: 
Normative ranges calculated from control data were used to identify the 
number of stroke participants whose performance fell outside of 95% 
of healthy controls for each parameter. Cumulative sum histograms 
of participant performance are illustrated for Level 1 (Figure 3). The 
parameter that identified the most stroke participants overall was 
number of hits in Level 1: 96% of stroke participants (22/23) hit fewer 
targets than 95% of control participants. The parameter that identified 
the second most participants as impaired was RT+MT (78%) (Figure 
3, Table 2).
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With regards to measures that specifically quantified bimanual 
performance in stroke, the best parameters in Level 1were RT diff 
(57%), difference in hand speed peaks, (48%) and absolute tilt (43%). 
The majority of participants that displayed differences in number of 
hand speed peaks had more peaks with their unaffected limb (>35 more 
speed peaks than with affected limb). Impairment in absolute tilt was 
associated with a greater amount of tilt (>9° on average).

Individual profiles of impairment: A primary aim of the current 
task was to develop individual profiles of impairment rather than group 
comparisons. These patterns are displayed in Figure 4 and show the 

unique pattern of impairments across participants. In Level 1 some 
participants had impairments primarily in task success, and hand 
and ball parameters, but displayed minimal impairments in bimanual 
performance (i.e. participants 4 and 19). Conversely, some participants 
failed the majority of bimanual parameters, but passed most of the 
other parameters (i.e. participants 8 and 16). Several participants were 
observed to have impairments across all recorded parameter groups 
(i.e. participants 14 and 23).

Overall, stroke participants failed more task parameters than control 
participants (Figure 5). Approximately 78% of stroke participants 
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Figure 4: Individual stroke participant performance represented for Levels 1, 2 and 4. Parameters are grouped into task success, hand and ball and bimanual 
parameters. Black squares reflect failure of the parameter (fell outside of 95% of control participant performance). Results show that the majority of participants 
failed task success parameters across levels but individualized patterns of parameters failed are shown across the remaining two parameter groups.
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failed 4 parameters or more in Level 1 compared to only 5% of control 
participants who failed 4 or more.

Bimanual robotic task: LEVEL 2-6

Performance of stroke participants across Levels: Level 1 
identified the most performance impairments in stroke participants 
with the highest number of parameters failed (151); (Table 2). 
Unexpectedly, as the levels progressed in difficulty (Level 2 to 6) the 

number of parameters failed tended to decrease (101, 74, 85, 47, 38; 
Table 2). Performance across levels was analyzed to determine the 
number of ‘new fails’ that were introduced at each level (Table 2). 
Levels 1, 2 and 4 showed the highest ability to identify impairments 
in participants as they identified the most fails overall, as well as the 
highest combination of new fails. As a result we focused our further 
analyses on Levels 2 and 4.

Abbreviations: sp=speed, pks=peaks, aff=affected side, unaff=unaffected side (affected side always compared to control non-dominant side and unaffected side always 
compared to control dominant side) Cusum=Cumulative sum; RT+MT=reaction time plus movement time.

Table 2: Number of stroke participants that were identified as outside of 95% of controls (number of fails) on each parameter across each level.

Level 1 2 3 4 5 6 Overall
Parameter Control percentile Fail # Fail # New fails Fail # New fails Fail # New fails Fail # New fails Fail # New fails % failed

Task Success
Hits < 5 22 14 0 12 0 17 1 0 0 2 0 100%

Drops > 95 - 11 11 7 1 6 2 3 0 3 0 57%
Drops/Hit > 95 - 11 11 11 3 16 4 5 2 2 0 83%

Hand/Ball
RT+MT > 95 18 15 0 2 0 2 0 - - - - 83%
Ball sp < 2.5,> 97.5 15 5 3 8 1 7 2 8 1 1 0 91%

Hand sp aff < 2.5,> 97.5 16 6 2 2 0 1 0 1 0 1 0 74%
Hand sp unaff < 2.5,> 97.5 14 4 0 0 0 1 0 1 0 1 0 61%

Sp pks aff > 95 7 2 0 4 2 2 0 3 0 2 0 39%
Sp pks unaff > 95 10 5 0 5 1 3 1 1 0 2 0 48%

Bimanual
Absolute tilt > 95 10 11 2 7 2 8 0 6 1 8 1 61%

RT diff < 2.5,> 97.5 13 - - - - - - - - - - 57%
Bar length > 95 2 3 2 0 0 1 2 0 0 0 0 22%
Diff sp pks < 2.5,> 97.5 11 9 2 6 0 9 0 8 1 5 0 65%

Diff hand sp > 95 5 2 0 0 1 5 4 3 1 0 0 43%
Diff path length < 2.5,> 97.5 8 4 1 10 3 7 0 9 2 11 1 65%
Total num. fails 151 101 74 85 47 38
Total new fails 32 13 14 8 2
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Participant performance: Levels 2 and 4: As in Level 1, the best 
parameters for identifying participants with stroke in Level 2 were hits 
(65%) and RT+MT (65%); (Table 2). Absolute tilt was the best bimanual 
parameter for identifying impairments with stroke (48%). Thirty-two 
‘new fails’ were captured in Level 2 primarily due to the fact that ball 
drops were possible in this level. Drops and drops per hit identified 11 
participants each (48%).

In Level 4, the number of hits was again the best parameter to 
identify impairment in stroke performance with 17 fails (74%) and 
the second best parameter was drops per hit (70%). The best bimanual 
parameters were absolute tilt (35%), difference in speed peaks (39%) 
and path length difference (30%). Fourteen new fails were captured 
indicating that 14 participants failed a parameter in Level 4 that they 
had not previously failed.

Across the Levels 1, 2 and 4, participants with stroke failed more task 
parameters than healthy control participants (Figure 5). Approximately 
78% of stroke participants failed 8 parameters or more when all three 
levels were combined compared to only 5% of control participants who 
failed 8 or more. 

Finally, robotic task performance was compared between 
participants with clinically identified, mild ipsilesional impairments 
(n=9) and those without (n=14). We found no significant differences 
for any parameter between these groups (Kolmogorov-Smirnov tests, 
p>0.05).

Correlation with clinical scores: The number of parameters failed 
was combined across Levels 1, 2 and 4 and was compared to other 
clinical evaluation scores (Figure 6). Percentage of parameters failed 
overall was significantly correlated with FIM scores: FIM motor (r=-
0.80, p<0.001) FIM cognitive (r=-0.47, p=0.02) and FIM total (r=-0.77, 
p<0.001). Combined CMSA (arm and hand) score was correlated with 
percentage of parameters failed (r=-0.60, p=0.003). Negative correlation 
values indicate that low clinical scores were correlated with more task 
parameters failed.

Discussion
Bimanual task performance

The robotic ball on bar task quantified performance on a bimanual 
activity and identified impairments in participants with stroke. The 
primary goal of the task was to hit as many targets as possible, which 
required coordinated movement of both limbs. The higher task levels 
involved balancing the ball, thus increasing task difficulty which we 
hypothesized would highlight more impariments in stroke performance. 
The principle was to stress the motor system with a more complex task 
to help uncover subtle deficits in coordination to separate participants 
with stroke from healthy controls. However, the reverse was observed; 
Level 1 identified the most impairments in participants with stroke. 
This unexpected result likely reflects that healthy control performance 
was stereotyped for the initial levels in which participants simply 
moved the ball to the spatial target, but became more idiosyncratic as 
balancing the ball became more difficult. This increased the variability 
of control performance and influenced the 95% criteria used to 
identify whether a participant with stroke was impaired on a particular 
parameter. However, we found Levels 2 and 4 did identify new features 
or individuals as being impaired compared to Level 1. Thus, we thus 
focused our analysis on Levels 1, 2 and 4 as together they captured the 
most impairments in performance. Another advantage of reducing the 
number of levels is the reduction of task time from 6 to 3 minutes. In 
order to integrate tasks into a standard assessment protocol and avoid 
fatigue for the patient, shorter task time is highly beneficial. In addition, 

the more challenging levels were often frustrating for participants, both 
patients and controls. Removal of the two most challenging levels 
makes the task more enjoyable and will encourage patient compliance.

Task success was determined by the number of targets hit and 
number of drops (times the ball fell off of the bar). In the initial level, 
the number of hits identified the most participants with stroke of all 
parameters (96%). Number of hits was the most sensitive parameter 
overall in the sense that it indicated impaired performance in 100% of 
participants with stroke when the 3 levels were combined. Failure of 
this parameter indicates global inability to complete the task but does 
not provide information about the under-lying impairment that led to 
task failure; the sub-categories of performance parameters provide this 
insight.

The present bimanual task captures much motor impairment 
observed in previous studies. In Level 1 hand and ball-related 
parameters indicated that participants with stroke moved slower, took 
longer to respond to target illumination and to move to the target 
(RT+MT) and exhibited more corrective sub-movements. These 
findings are in line with previous characterizations of visually-guided 
reaching with one hand [5,21] or simultaneous reaching with both 
hands [18,20,21,23]. Further, we found specific deficits in parameters 
related to bimanual control notably, differences in RT between the 
two limbs and differences in hand speed. These asymmetries in motor 
performance are likely related to previous observations of decreased 
movement synchrony [18,21,23,33]. Interestingly, the difference in RT 
between the two hands in our bimanual task was less than ~50ms for 
healthy control participants. When both hands are assessed separately 
in a reaction time reaching task, the difference in RT was also found 
to be less than ~50 ms for healthy controls [5]. This highlights that a 
hallmark of healthy motor control is symmetry between the limbs. 
Such small differences in motor performance are not easily observable 
with visual inspection, which highlights the advantages that a robotic 
paradigm has in capturing subtle differences in performance.

Individual patterns of impairment

A primary aim of the task was to develop an individualized 
‘finger print’ of impairment for each participant, rather than to 
characterize group differences in performance between stroke 
and control participants. In a heterogeneous population of stroke 
participants, different lesion severity and location is likely to lead to 
vast differences in deficits, for example motor vs. sensory impairment 
[34]. Unique impairments (or pattern of impairment) seen in one 
participant may be lost when averaged across participants. Although 
the current study focused on parameters that identified impairments 
across many participants, parameters that identified fewer participants 
are equally important to assess. For example, changes in bar length 
identified impairments in only 6 individuals. In these individuals, 
larger cumulative changes in bar length were often caused by relatively 
small but frequent oscillatory movements on the spring-like bar (data 
not shown). These oscillations may reflect unique underlying injury 
or impairment in these participants such as the onset of tremor [35] 
and may necessitate novel strategies for rehabilitation. For example, the 
application of biomechanical loads to the limbs can reduce tremor [36] 
and may evolve as a beneficial rehabilitation component for individuals 
with tremor-like impairments post-stroke. 

Relation to clinical scores

Performance on the task overall was significantly correlated to 
clinical scores. The number of parameters failed in the task correlated 
most strongly (r=-0.80) with measures of functional motor abilities 
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(FIM motor). The strength of the correlation with FIM is greater than 
that found previously for our other robotic tasks: visually-guided 
reaching [5] and position sense [26] both of which evaluate each limb in 
isolation. This observation may indicate that performance of functional 
daily activities is better reflected by a task that assesses the coordinated 
use of both limbs. We noted that a number of participants failed the 
majority of parameters on the bimanual task but scored almost perfect 
on the FIM. Participants may score highly on the FIM if they have 
learned compensatory strategies (i.e. tying shoes or buttoning a shirt 
with one hand) or use assistive devices to complete the tasks specific 
to the FIM. In a novel bimanual task such as ours, in which the use of 
both hands is necessary, more deficits were apparent. In this way, the 
bimanual task provides a more sensitive measure of bimanual motor 
function, and is likely more reflective of performance on daily activities 
that requires the use of both hands.

Limitations and future considerations
A limitation of the current study is the relatively small sample 

size that did not afford the systematic comparison of anatomical 
lesion characteristics and robotic task performance. For example, 
right- vs. left-affected stroke participants may exhibit hemisphere-
specific impairment in different aspects of movement coordination 
(i.e. trajectory vs. end-point accuracy) [37-39]. However, the cause 
of bimanual impairment post-stroke is likely multi-faceted. It may 
be affected by the suppression of inter-hemisphere communication 
[40] asymmetry in hemispheric inhibition (or dis-inhibition) [41,42], 
damage to the supplementary motor area [43], unilateral sensory [44] 
or motor impairments[20] or a combination of these and potentially 
other factors. Future work will combine the current task with other 
robotic assessment tasks to provide further insight into whether 
specific patterns of bimanual impairment is related to lesion anatomy 
or to identified unilateral sensory and/or motor deficits. 

Summary
Our task provides a proof of principle for the quantification 

of bimanual control post-stroke. Accurate assessment of bimanual 
coordination is essential to reliably track improvement during 
traditional or novel rehabilitation approaches [24,25]. Through 
objective measurement of attributes of bimanual control, the robotic 
task can provide an accurate baseline from which to assess changes over 
the course of recovery or rehabilitation.
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