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Abstract
Demethylation of softwood kraft lignin from woody biomass to improve the hydroxyl number in modified 

demethylated lignin and to produce lignin-based polyols was investigated using several biophysical techniques. Lignin 
is a tremendously under-developed natural polymer co-generated through papermaking and biomass fractionation. 
Molecular weights of lignins were analyzed by high-performance size-exclusion chromatography (HPSEC). Molecular 
weights of softwood kraft lignin (SKL) and demethylated lignin (DL) were determined as 1071 and 891 gmol-1, 
respectively. For demethylation, iodocyclohexane in dimethyl formamide (DMF) was used under reflux conditions, 
with a resulting yield of 87%. Fourier transform infrared spectroscopy (FTIR) was used to determine characteristic 
absorption peaks of softwood kraft lignin and demethylated lignin. Significant spectral differences were noticed 
between the two types of lignin due to changes in chemical structure. Total hydroxyl numbers were determined by 
titration. Phosphorus nuclear magnetic resonance spectrometry (31P-NMR) was employed to analyze the structure of 
lignin and different types of phenolic hydroxyl units. Nevertheless, further chemical and biological modifications within 
the lignin molecule are needed for various industrial applications to synthesize polyurethane foam by using chemically 
modified lignin-based polyols.

Keywords: Demethylation; Softwood kraft lignin (SKL);
Demethylated lignin (DL); Hydroxyl numbers; FTIR spectroscopy; 
31P-NMR 

Introduction
Lignin is described as an unsystematic, unstructured, 3-D polymeric 

complex system that does not possess a regular, precise structure with 
fixed recurring units. In lignin, the main functional groups are hydroxyl, 
methoxy, carbonyl, and carboxyl moieties in several amounts, whose 
components depend on the botanical source and the applied extraction 
processes [1]. In the plant kingdom, lignin is the most abundant 
polymeric organic material after cellulose [2]. The lignin biosynthetic 
pathway utilizes mainly three different types of phenylpropane units 
to make the lignin molecule. These include a guaiacyl precursor made 
from coniferyl alcohol and guaiacyl-syringyl precursors derived from 
coniferyl and sinapyl alcohol. Lignin from softwood (conifers) is 
mainly composed of guaiacyl units, while hardwood (angiosperms) 
lignin contains guaiacyl-syringyl units [3].

Both lignins contain mainly glycerol-aryl ether (β-O-4) linkages 
between short and linear chains of phenylpropane units [4]. The 
monomeric units of lignin are connected by a number of different C-C 
and ether linkages, which accounts for the complicated 3-D structure 
of lignin [2,5].

The different types of functional groups in a complex lignin 
macromolecule are presented in Figure 1, [3,6]. Lignins are the by-
product of pulp and paper industries and are abundant in nature. 
The uses of lignin in different applications are as a dispersant agent 
for pesticides, emulsifiers, ion-exchange resins, water treatment 
agent, pesticide surfactants, heavy metal sequestrant, binders, animal 
foods, grinding aids, electrolytic refining, and tanning agents, or as a 
component of composites and copolymers [7-9].

To create value-added applications of lignin, medium- and long-
term technologies mainly for the preparation of LMW compounds that 
can substitute for products produced by the petrochemical industry 
must be established [10]. Nevertheless, the structure of lignin is not 

completely recognized yet. Over the last two decades, many studies 
have been undertaken to understand the industrial applications of 
lignins [6]. The subjects of study by several research groups are lignin 
and their advanced applications, including, polyurethanes [10], acrylics 
[11], epoxies [12], and phenolic resins [13].

For polyurethane synthesis, the utilization of lignin as a 
macromonomer frequently follows two general methods: direct 
use of lignin without any major chemical modification, alone or in 
blends with other polyols [14], or (2) chemical modification, such as 
depolymerization, esterification and etherification reactions [10,15]. 
A broad range of lignin-based polyurethane materials (rigid foams, 
elastomers, sealants) has been produced and the resultant mechanical 
and thermal properties have been assessed [16].

Due to shared structural similarities, the industrially important 
organic compound vanillin can be produced from lignin, as has been 
reported by many scientists [17]. By catalytic degradation of lignin, 
many other industrially valuable small molecule chemicals can be 
produced [17]. However, to control for serious practical problems 
related to the enormous energy costs and basic purification processes, 
additional research is required to produce small molecule chemicals 
from this complex natural biopolymer. The second approach for the 
utilization of lignin is as a primary material in a diversity of green 
polymer products [18]. Nevertheless, the synthesis of commercial based 
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sustainable polymers requires high-purity initial materials having great 
potential and reproducible reactivity.

Lewis acids have been comprehensively studied for the 
demethylation of methoxyl groups in small molecule organic chemistry 
[19]. The methoxyl group in lignin can be converted to a more reactive 
hydroxyl group via demethylation [18,20]. In this study, we used 
iodocyclohexane as a hydriodic acid (HI) source in DMF. By increasing 
lignin hydroxyl-group contents and its reactivity, this treatment was 
found to be valuable, compared with other Lewis acids such as boron 
tribromide (BBr3) [21], and trimethylsilyl iodide (TMSI) [22] which 
were not.

The aim of this study was to explore the demethylation of the 
lignin molecule and to characterize different hydroxyl groups present 
in commercially available technical and demethylated lignins using 
different biophysical methods. The hydroxyl contents are needed 
to characterize commercial polyols for the synthesis of bio-based 
polyurethane foam used for several applications as shown in Figure 3 
and this concept was earlier presented by da Silva et al. [23].

Materials and Methods
Softwood kraft lignin (SKL) was provided by Krugar Wayagamack 

Inc. Quebec, Canada, contains 1.50% ± 0.02ash. The ash contents were 
determined by gravimetric method whilst sample ignition heating 
up to 525°C using Sybron-Thermolyne® bench top muffle furnace. 
Polystyrene standards were purchased from American Polymer 
Standards Corporation, Mentor, OH.

Analytical HPSEC
Polystyrene standards were used to determine the molecular 

weight of lignin.  The calibration curve standards were used for several 
fractions of very low poly dispersity close to unity in HPSEC analysis. 
Polystyrene standards are commonly used for lignin molecular weight 
determination. Lignin fractions and polystyrene standards exhibited 
very comparable behavior throughout a large range of molecular 
weights in a regular HPSEC analysis of lignin [24]. The experimental 
conditions for HPSEC were: flow-rate 1.0ml/min, solvent DMF, sample 
concentration of 2mg/ml of DMF, volume injected variable from 100 
µl to 200 µl, column temperature 80°C, RI detector temperature 40°C, 
UV-vis scanning range at 270-350 nm wavelength, Refractive Index 

scanning range at 400nm wavelength, Refractive Index detector-Waters 
410 (Differential Refractometer), UV-vis detector-Waters M-490,GPC 
software- EMPOWER, HPLC system by Millipore-Waters and 
Styragel HR1 column 104A. Calibration curves were constructed with 
polystyrene standards.

Optimized Reaction Conditions for Demethylation
Reaction mixtures were prepared in a three neck round bottom 

flask and included 25mg of softwood kraft lignin (SKL) dissolved in 2.0 
ml of dimethyl formamide DMF and 1.3 ml of iodocyclohexane [25].
The reaction mixture was purged with nitrogen to remove oxygen and 
setup with a reflux condenser. The reaction system was refluxed for 3h at 
145°C, cooled, poured into water (20ml) and extracted with tetrahydro 
furan (THF) and toluene (20 ml x 3). The organic layer was washed 
with saturated aqueous sodium bisulphite (NaHSO3) and brine solution 
and the samples were dried over oven-dry sodium sulphate (Na2SO4) 
and then filtered. The filtrate was concentrated at 82°C in a rotary 
evaporator to remove all organic solvents, including iodocyclohexane, 
and afterward dried in a vacuum desiccator to obtain demethylated 
lignin (13.7mg, 87% ± 0.51 yield). The process is illustrated by the 
general equation as shown in Figure 2.

FTIR Spectroscopy
FTIR spectra of softwood kraft lignin (SKL) and demethylated 

lignin (DL) were measured using a Bruker Tensor 27 FTIR 
spectrometer equipped with an IR-microscope and MCT detector 
(Karlsruhe, Germany). For spectral analysis, 2.0 mg of each lignin 

Figure 1: Partial lignin structure proposed by Adler [3,6].
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sample (SKL and DL) was mixed with200 mg of KBr. The transmission 
spectra (3500 to1000cm-1) of SKL and DL were measured at room 
temperature. To prevent moisture contamination of the pellet, the 
following two steps were performed: SKL, DL and KBr were left at 
40°C for 24 h under reduced pressure before pellet preparation, and 
(2) pellets were maintained under the same conditions for 12 h before 
FTIR analysis. By using Opus software, the baseline was corrected 
in the collected transmission spectra and stabilized according to the 
highest band.

Hydroxyl Number Determination by Esterification
Phthalation is one of the most common wet chemical methods 

for lignin hydroxyl group determination. The total hydroxyl content 
can be measured by a standard procedure with a phthalic anhydride, 
imidazole/dioxane mixture, followed by back-titration with a NaOH 
solution. This provides a simple method for determining total hydroxyl 
content. Using the esterification approach as reported by Kurimoto et 
al. [26,27] aided in the determination of the total OH value.

A mixture of 0.2-0.5 g of each lignin (SKL and DL) sample and 
25 ml of phthalation reagent was separately heated at 110°C for 20 
min.  After cooling, 50ml of a dioxane/water solution (80:20 v/v) was 
added to the mixture and back titrated with 1N NaOH solution to get 
the equivalence point using a pH meter. The phthalation reagent is 
the combination of three components: 30g phthalic anhydride, 4.84 g 
imidazol, and 200 ml dioxane. The OH value was calculated based on 
esterification as follows:

Hydroxyl Value (mmol/g) = (B - A)N/W + acid value

where B is the volume of 1N NaOH solution used to titrate the blank 
solution (ml); A is the volume of 1N NaOH solution used to titrate the 
sample solution (ml); N is the normality of the NaOH solution; and W 
is the weight of the sample (g).

The acid values were also determined by titration with 1N NaOH. 
lg of each lignin (SKL and DL) was dissolved separately into 100ml 
of a dioxane/water solution (80:20 v/v) and titrated with 1N NaOH 
to determine the equivalence point. The acid value was calculated as 
follows:

Acid value=(C - B)N/W

where C is the volume of 1N NaOH solution used to titrate the sample 

solution(ml); and B is the volume of 1N NaOH solution used to titrate 
the blank solution (ml) (Tomoko et al. [28]).

Sample Preparation for 31P-NMR Analysis
The lignin samples were phosphitylated as described by Hoareau et 

al. [29]. A combination of pyridine and CDCl3 (1.6/1, v/v) was prepared 
and dried over molecular sieves. The above solution was further used 
for the preparation of relaxation reagent with 5 mg/ml of chromium 
(III) acetylacetonate [Cr(C5H7O2)3] solution and 5 mg/ml of cholesterol 
solution, which served as an internal standard.

Phosphitylation of lignin samples was carried out with 2-chloro-
4,4,5,5-tetramethyl-1,3,2-dioxaphospholane. 20mg of each lignin were 
dissolved in 0.4 ml of DMF in a sealed vial with a Teflon-faced septum. 
Next, 0.25 ml of solvent solution was added, followed by the addition 
of 0.1 ml of internal standard and relaxation solution. The (0.1 ml) 
phosphitylation reagent was then added, and the sample was shaken 
to ensure homogeneity. After derivatization, the resulting solution was 
transferred to a 5-mm tube, and the 31P-NMR spectrum was recorded 
by a Bruker Ultrashield Plus-400 MHz spectrometer.

Results and Discussion
The lignin macromolecule has been noted by many authors for its 

structural uniqueness and limited industrial usage [30-33]. Its complex 
structure and mass dispersion have also impeded the identification of 
its polymer properties.

Molecular Weight Determination by HPSEC
Polystyrene standards were used for the calibration of HPSEC 

columns and a calibration curve was obtained by applying a 3rd order 
polynomial equation to the polystyrene data. The calibration curve was 
then used to determine the molecular weights of lignins. The results 
demonstrate that the average molecular weight values (Mn) and the 
distributions of molecular weight (Mw) values obtained for both lignins 
were very similar, as shown in Table 1.

FTIR Spectra of SKL and DL
FTIR is one of the effective tools to determine the functional groups 

[4] and the structural properties of the lignin molecule. The peak 
assignments of IR bands and their relative transmittance in SKL and 
DL are listed in Table 2. The characteristic IR transmission peaks of 
SKL and DL are shown in Figure 4. In the fingerprint region, spectral 
differences were observed between SKL and DL in the range between 
(1600 to 1000 cm-1). Due to aromatic skeletal vibration and guaiacyl 
ring breathing with carbonyl stretching, the dominating spectra were 
observed at band positions of 1603 and 1095 cm-1 in the SKL lignin. 

Figure 3: A general view for the synthetic routes of lignin mixing expended for 
different applications (1) direct use, (2) after chemical/biological modifications 
convert into phenolic resins (intermediates) and liquid polyol, (3) synthesis of 
rigid polyurethane foam (PUF) using polyols, (4) synthesis of rigid polyurethane 
elastomers using lignin based polyols. Previously, this concept was proposed 
by B.d Silva et al. [23].

Standards/ 
Lignins

Identifica-
tion

Retention time (tr) 
minutes Mw(Da) Mn(Da) (MW/ Mn)

Polysty-
rene Stan-

dards

ps1 9.814 500 490 1.0
ps2 8.682 610 600 1.0
ps3 8.640 892 870 1.0
ps4 8.086 1000 998 1.0
ps5 6.682 3000 2980 1.0
ps6 6.1 4020 4000 1.0
ps7 6.065 5590 5570 1.0
ps8 5.562 9145 9100 1.0

Lignins
SKL 7.916 1071 986 1.08
DL 8.211 891 744 1.19

Table 1: HPSEC retention times of calibration curve standards.
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As contrasted to SKL, the primary peak of DL was observed at bands 
1664, 1389, and 1248 cm-1. Large spectral differences were monitored 
in SKL and DL and we observed significant changes in lignin structure 
due to the displacement of methoxy to hydroxyl groups. These results 
are consistent with those reported by Kubo et al. [4] and Pandey et al. 
[34]. The different types of hydroxyl groups in SKL and DL were further 
characterized by 31P-NMR.

Demethylation
The basicity of the solvent during demethylation plays a critical role 

in reaction efficiency. The production of hydriodic acid (HI), which 
is essential for demethylation, from iodoalkanes requires a strongly 
basic solvent. However, the solvent must not be so strongly basic as 
to neutralize HI. In situ, an elimination (E1) reaction produces HI, 
which afterward reacts with methoxyl groups of lignin by nucleophilic 
substitution (SN2) reaction to produce methyl iodide (CH3I) and 
demethylated lignin (DL). The optimized reaction conditions are 
shown in (Figure 2); the methoxyl groups were basically removed with 
10.0 equivalents of iodocyclohexane to give the desired product, with 
a 87%±0.51 yield, without further purification. The method described 
here is more efficient than that which Canonica et al. [35] reported.

NMR Studies
The different types of hydroxyl groups in SKL and DL were 

investigated by 31P-NMR. The spectra of SKL and DL are shown in Table 
3 and Figure 5. For condensed phenolic units, the two sharp signals 
were observed at 146-145 ppm. Table 4 shows signal assignments for 
both lignins. The following spectral regions were integrated to acquire 
the different types of hydroxyl groups: aliphatic hydroxyl signals at 
150 ppm, syringyl phenolic hydroxyls from 140-141ppm, guaiacyl 
phenolic hydroxyl signals at 137.5ppm, p-hydroxyphenyl phenolic 
hydroxyl at 132.5ppm, and carboxylic acid units from 131-130 ppm. 
The proportion of different hydroxyls can be computed by assimilating 
various signals of 31P-NMR spectra, whereas the arrangement of 
different types of phenolic hydroxyl units in lignin can be seen in 
Figure 5. The phenolic peak of DL is higher than the peak of SKL due 
to the presence of different condensed phenolic hydroxyl units, as was 
previously reported by Carolina et al. [36]. By using the esterification 
method, the total hydroxyl values were determined containing phenolic 

Serial 
No.

SKL
Band position 

(cm-1)

DL
Band position 

(cm-1)
Assignment

1 3424 3454 O-H stretching
2 2960 2937 C-H stretching
3 2920 2870 C-H stretching
4 2652 - C-H stretching

5 - 1664 C=O stretching 
(unconjugated)

6 1603 - Aromatic skeletal 
vibration+C=O stretching

7 1511 1501 Aromatic skeletal vibration

8 1455 1437 C-H deformation (CH3 and 
CH2)

9 - 1409 C-H in-plane deformation 
with aromatic ring stretching

10 - 1389 C-O of syringyl (S) ring
11 1264 1248 C-O of guaiacyl (G) ring
12 1206 - C-C + C-O stretch

13 1095 1092
Aromatic C-H in-plane 

deformation in the guaiacyl 
ring

Table 2: Results of the IR Bands obtained in SKL and DL.
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Figure 4: FTIR spectra of (A) softwood kraft lignin (SKL), and (B) demethylated 
lignin (DL).

Signal (ppm) Assignment
150 Aliphatic-OH

146-145 Condensed phenolic units
140-141 Syringyl phenolic-OH

137.5 Guaiacyl phenolic-OH
132.5 p-Hydroxyphenyl-OH

131-130 Carboxylic acid units

Table 3: Signal Assignments of SKL and DL by 31P-NMR spectrometry.

or sterically hindered hydroxyl groups; the values were 3.06 (±0.50) 
and 5.01 (±0.57) mmol/g for SKL and DL, respectively. In each lignin, 
the quantity of different hydroxyl groups was determined by 31P-NMR 
method presented in (Table 4). The most abundant groups found in 
both lignins were carboxylic acid and guaiacyl-OH as compared to 
other hydroxyl units reported by Diao et al. [37].

Conclusions
The industrial production of goods mainly depends on sustainable 

growth, which involves the use of safe raw materials resources. 
Kraft lignin, as a large available biomass resource (by-product of 
pulp mills), is a very appealing and favourable raw material to 
produce biopolymers and biofuels for use in process unit operations. 
Economical affordability of lignin-based processes and advances in 
this field are likely to play a key role in the industrial development 
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of lignin. HPSEC results showed that it is possible to use polystyrene 
standards for lignin molecular mass analyses. The fractions of 
different molecular masses have different chemical compositions 
and functional groups as indicated by FTIR analysis. Notable 
spectral differences were observed in SKL and DL due to changes in 
lignin structure and displacement of methoxyl to hydroxyl groups. 
The different types of phenolic hydroxyl units were investigated by 
31P-NMR. In summary, demethylation of the lignin molecule using 
iodocyclohexane as HI source in DMF has been developed. It was 
demonstrated that the total hydroxyl numbers (1.6-fold increase in 
DL as compared to SKL) indicate demethoxyl groups were removed 
successfully in high yields under optimized reaction conditions. The 
strategy offers a new alternative approach for protecting phenolic 
groups, which is helpful in regulating the optimum processing 
condition during the development of lignin based polyols and its 
application for the synthesis of bio-based polyurethane foams. 
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