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ABSTRACT
Infertility affects 10%-20% of heterosexual couples worldwide and 50% are due to male factors. The most severe type 

is non-obstructive azoospermia, which is distinguished by a total lack of sperm in the seminal fluid. However, the 

genetic causes of non-obstructive azoospermia have been incompletely understood. Here, an investigation was 

conducted on a Chinese family with non-obstructive azoospermia to examine its pathogenesis. Using whole-exome 

sequencing, we identified a new heterozygous deletion mutation (c.1937_1942delTAAATA, p. Ile646_Asn647del) in 

exon 24 of SYCP2 gene. SYCP2 is a synaptonemal complex protein that plays an essential role in meiosis. 

Conservation analysis indicated that amino acid at position 647 was highly conserved among different species. 

Moreover, there was a notable modification in the three-dimensional transformation of the mutant SYCP2 protein. 

In vitro functional experiments showed that the SYCP2 protein expression decreased in HEK293T cells transfected 

with plasmids containing SYCE2 c.1937_1942delTAAATA. Immunofluorescence staining showed that the 

subcellular localization of mutant SYCP2 protein altered, which was present in both the cytoplasm and nucleus, 

whereas wide-type SYCP2 was only found in the nucleus. In conclusion, our research suggests that the heterozygous 

deletion variant SYCP2 c.1937_1942delTAAATA causes non-obstructive azoospermia occurrence and ultimately 

result in male infertility. This study expands the variant spectrum of non-obstructive azoospermia-associated genes and 

highlights the essential role of SYCP2 in spermatogenesis.
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INTRODUCTION
Approximately 10%-20% of heterosexual couples worldwide
experience infertility [1], which is characterized by failure to
conceive after engaging in regular unprotected sexual intercourse
for 12 months. Approximately half of the infertility cases are
believed to be caused by male factors [2]. Male infertility can be
attributed to various factors, which can be categorized into four

main causes: quantitative deficiencies in spermatogenesis,
dysfunction or obstruction of the ductal system, disturbances in
the hypothalamic-pituitary axis and qualitative deficiencies in
spermatogenesis [3]. Among the male infertility community,
azoospermia is considered the most clinically severe form.
Azoospermia, which is defined as the total lack of sperm in the
semen, is found in approximately 1% of males overall and in
10%-15% of males who are unable to conceive [4]. Azoospermia
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Region, for additional examination due to sperm loss. This 
study was approved by the Institutional Review Board and 
Ethics Committee of Guangxi Maternal and Child Health 
Hospital (GXMC20230310) and performed in accordance with 
the Declaration of Helsinki. All participants provided written 
consent before participating in the study [16].

WES and Sanger sequencing

WES was conducted on the blood samples from the proband. 
Azoospermia-associated gene mutations within exon 24 of 
SYCP2 identified by WES were confirmed by Sanger 
sequencing. Blood samples from the proband’s parents were 
subjected to Sanger sequencing.

Bioinformatics analyses

Iterative Threading ASSEmbly Refinement (I-TASSER) was 
utilized to forecast the three-dimensional (3D) protein structures 
of mutant (MUT) and wild-type (WT) SYCP2 proteins. The 
prediction can be found at the website (https://zhang group.org//
I-TASSER/). The sequences of SYCP2 from various species were
acquired from the UniProt database (https://www.uniprot.org/).
We aligned SYCP2 sequences among different species on the T-
coffee website (https://www.ebi.ac.uk/Tools/msa/tcoffee/) to
analyze the conservation of the mutant sites [17].

Plasmids construction and cell transfection

The pEGFP-C1 vector was used to generate the WT plasmid by 
directly inserting the cDNA of human SYCP2. Using the WT 
plasmid as a template, the MUT plasmid was created and 
verified using Sanger sequencing. The analysis of function was 
conducted using HEK293T cells, derived from human 
embryonic kidney, that were cultured in complete medium 
prepared with 90% DMEM(Gibco, USA) and 10% fetal bovine
serum (Gibco, USA) at a temperature of 37°C and with a CO2
concentration of 5%. HEK293T cells were transfected with 
recombinant plasmids carrying either MUT or WT SYCP2 genes 
at a ratio of 3:1 for PEI (1 μg/μL) to the plasmid [18].

RNA expression analysis

HEK293T cells were transfected with 1.5 μg/well of the 
recombinant plasmids in 12-well plates. Following a 24-h 
transfection period, the cell lysates were utilized to extract total 
RNA with Trizol reagent (Invitrogen, USA). Subsequently, the 
RNA was reverse-transcribed into cDNA using RevertAid Master 
Mix (Thermo Scientific, USA). PowerUp™ SYBR™ Green 
Master Mix (Thermo Scientific, USA) was used for quantitative 
real-time PCR (qPCR) to compare SYCP2 mRNA expression 
levels between HEK293T cells carrying WT and MUT plasmids. 
The 2–ΔΔCT method was used to calculate results. QPCR primers 
for amplifying SYCP2 were as follows: the forward primer 
sequence was AGATTCACAGGCAGCGGAAA and the reverse 
primer sequence was TACAGGTGTCCAACATGCCC. The 
forward primer for GAPDH amplification was 
ATCAGCAATGCCTCCTGCAC and the reverse primer was 
TGGCATGGACTGTGGTCATG.
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exhibits a wide range of phenotypic presentations, which can be 
categorized into Non-Obstructive Azoospermia (NOA) and 
Obstructive Azoospermia (OA) based on the underlying cause. 
OA is characterized by a lack of sperm in the ejaculate resulting 
from a blockage in sperm transportation, whereas NOA is 
caused by either primary or secondary testicular dysfunction [5]. 
NOA, an important type of azoospermia, represents >70% of all 
azoospermia cases [6].

Our current understanding shows that NOA appears to be 
strongly associated with genetic factors. Due to the significant 
advancements in high-throughput sequencing in recent years, 
Whole-Exome Sequencing (WES) has emerged as a valuable 
asset in identifying genetic variations linked to NOA. Recent 
extensive WES investigations concerning NOA have revealed 
that established genetic elements contribute to 23% of the 
etiology of this disorder [7], emphasizing the crucial involvement 
of genetics in NOA progression. Mutations in meiotic genes are 
primarily responsible for NOA occurrence. Many genes have 
been identified and their genetic variants may result in human 
NOA, including C140rf39 [8], DMC1 [9], KASH5 [10], MSH4 
[11], SHOC1 [12,13], SPINK2 [14], SYCP1, SYCP2, TEX11, etc. 
Among them, Synaptonemal Complex Protein 2 (SYCP2), an 
essential molecule, plays an irreplaceable role during sperm 
occurrence and development.

SYCP2 is located on chromosome 20q13.33 and consists of 45 
exons. In addition, it encodes an intracellular protein 
containing 1530 amino acids. Moreover, SYCP2 protein in the 
human body has tissue specificity since it is mainly expressed in 
testicular tissue. In previous studies, Offenberg et al., discovered 
for the first time that Sycp2 was transcribed specifically in 
meiotic prophase cells in rat testes. It can bind to DNA and 
assemble into axial elements. Yang et al., conducted a series of 
mouse experiments to prove that SYCP2 plays a crucial role in 
the Synaptonemal Complex’s (SC) assembly and synapsis of 
chromosomes during male meiosis. Sycp2-/- male mice appear 
sterile. By utilizing sycp2 hypomorphic and knockout mutant 
zebrafish lines, Takemoto et al. demonstrated that Sycp2 plays a 
crucial role in SC formation, as well as in the early stages of 
homologous pairing and meiotic recombination in vertebrates. 
These results indicate that SYCP2 mutation may influence male 
genital cell meiosis, which further causes male infertility [15].

To date, there have been only two documented instances where 
NOA is linked to SYCP2 mutations. However, the causes of 
NOA have been incompletely understood. The current research 
focuses on examining a Chinese Han family affected by NOA. 
To investigate the etiology of NOA, we examined pathogenic 
mutations in this family by analyzing clinical phenotypes and 
functional aspects.

MATERIALS AND METHODS

Patient

A 24-year-old male patient who had previously undergone sperm 
testing at different hospitals was referred to the Department of 
Andrology at the Reproductive Medical Center, Women and 
Children’s Health Hospital of Guangxi Zhuang Autonomous

Andrology, Vol.14 Iss.3 No:1000353 2



replicates were conducted for all experiments. The results are 
expressed as the mean ± standard deviation. The two 
independent sample t-test was employed to determine the 
statistical significance of the disparities between the two groups. 
We defined a P-value<0.05 as a statistically significant difference. 
Asterisks indicate significance in more detail, where *means 
p<0.05, **means p<0.01, ***means p<0.001 and ****means 
p<0.0001 [21].

RESULTS

Clinical phenotype

The proband had a history of male infertility for more than one 
year. He was married in 2021 and did not take any precautions 
after marriage. However, to date, he has been infertile. He had a 
normal sexual life and could ejaculate smoothly, with a 
moderate volume, without erectile dysfunction or premature 
ejaculation. Regarding medical history, no consanguineous 
marriage was observed in the Proband’s family. Physical 
examination revealed that the proband had normal male 
secondary sexual characteristics and the volume of the bilateral 
testes was 12 mL. The texture of his bilateral epididymis was 
normal, without nodules, tenderness or varicoceles. The vas 
deferens of both sides can be palpated. Laboratory tests revealed 
that the serum FSH level was within the normal range (4.28 
mIU/mL). The karyotype was 46, XY, del (10) (p13). Genetic 
testing for Y chromosome microdeletions yielded negative 
results. Nevertheless, semen analysis revealed a normal volume 
but an absolute absence of sperm (Table 1) [22].

Items Results Reference value

Liquefaction time 20 min <60 min

Consistency Medium -

pH 7.5 ≥ 7.2

Color Gray-white Gray-white, light yellow

Volume of sperm 3.4 ≥ 1.5 mL

Concentration of sperm 0 ≥ 15 × 106/mL

Percentage of the progressively motile 0 ≥ 32%

Percentage of the non-progressively motile 0 -

Percentage of the immotile 0 <60%

Total count of sperm 0 -
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Western blotting analysis

Cells transfected with recombinant plasmids harboring normal or 
altered SYCP2 were collected and rinsed with chilled PBS (Gibco, 
USA). To lyse the cells and prevent protein degradation, RIPA 
lysis buffer (Beyotime, China) was utilized, along with adding 1% 
PMSF (Beyotime, China). Next, the protein lysates were separated 
using 7.5% SDS-polyacrylamide gel electrophoresis (EpiZyme, 
China) and transferred to PVDF membranes (Millipore, USA). 
Following a 1.5-h incubation with 5% nonfat milk at room 
temperature, the membranes were incubated with either SYCP2 
rabbit polyclonal antibody (CN.A16098, ABclonal, China) or β-
tubulin rabbit polyclonal antibody (CN.10094-1-AP, Proteintech, 
China) overnight at 4°C. After incubation with goat secondary 
antibodies (CN.CW0103S, CWBIO, China) at ambient 
temperature for 1 h, protein expression was detected using an 
enhanced chemiluminescent reagent (NCM Biotech, China) and 
digital chemiluminescence system (Tanon Science and 
Technology, China) [19].

Immunofluorescence staining

HEK293T cells were grown on confocal dishes and treated with 
4% paraformaldehyde for 15 min after 48 h of transfection. 
After rinsing thrice with PBS, the samples were treated with 
0.2% Triton X-100 (Thermo Fisher Scientific, USA) for 15 min 
to achieve permeabilization. Finally, the cells were washed thrice 
with PBS and stained with DAPI (Beyotime, China) for 10 min 
in the dark. A inverted laser confocal microscope (LSM 880; 
Carl Zeiss, Germany) was utilized to observe the fluorescence of 
HEK293T cells [20].

Statistical analysis

Statistical analyses were conducted using the GraphPad Prism 
10.0 software. A minimum of three independent biological

Table 1: Semen analysis results of the proband.



Concentration of round cells 3.5 × 106/mL <5 × 106/mL

Quantification of seminal plasma fructose 122.8 ≥ 13 μmol/a ejaculation

Quantification of seminal plasma neutral α-
Glucosidase

87.4 ≥ 20 mU/a ejaculation

Mutation detection and bioinformatics analysis

To identify the cause of azoospermia, we conducted a 
genealogical analysis of this lineage. The lineage map was shown 
in Figure 1A. We collected the proband’s peripheral blood for 
WES. The results indicated that the patient carried a novel 
heterozygous deletion variant, c.1937_1942delTAAATA, p. 
Ile646_Asn647del, located at exon 24 of SYCP2 on chr20 
(Figure 1B). SYCP2 participates in SC formation during meiosis. 
This deletion mutation may be a possible pathogenic mutation 
in azoospermia. Sanger sequencing confirmed the deletion 
mutation of SYCP2 in the proband (Figure 1C). The mutation 
also existed in the proband’s mother, indicating that it was 
inherited from her. To estimate amino acid conservation in 
SYCP2 p.I646 and p.A647, we compared sequences from 
various species. The results depicted that the amino acid at 
position 647 was highly conserved, whereas the amino acid at 
position 646 was not (Figure 2A). Furthermore, a notable 
disparity was observed in the protein's 3D structures between 
WT and MUT, as depicted in Figure 2B [23].

Figure 1: Identification of a novel deletion mutation c. 
1937_1942delTAAATA in SYCP2 gene. (A) The pedigree chart 
of the NOA family. Black arrow indicates the proband. (B) A 
schematic diagram of the SYCP2 mutation c. 
1937_1942delTAAATA, p. Ile646_Asn647del. Punctuation 
means ellipsis. NTR represents N-terminal region and CCR 
represents C-terminal coiled-coil domain. (C) Sanger sequencing 
confirmed the mutation in the proband and his parents.

Figure 2: Biological analysis of the mutation. (A) The
conservation analysis of the amino acid mutant sites. The Asn at
647 was highly conserved while the Ile at 646 was not. (B) The
3D structure visualization of the Wide-Type (WT) and mutant
(MUT) protein. The mutant models of p. Ile646_Asn647del is
significantly distinct compared with the wide-type.

Functional analysis after plasmid transfection

To clarify the impact of SYCP2 p.Ile646_Asn647del on SYCP2 
expression, we transfected MUT and WT plasmids into 
HEK293T cells and extracted RNA and protein. In the level of 
SYCP2 mRNA expression, we didn’t find any difference between 
WT and MUT groups (Figure 3A). At the protein level, the 
expression of the MUT SYCP2 protein was significantly 
decreased compared with that of the WT protein (P=0.0101, 
Figure 3B and 3C). Furthermore, immunofluorescence was 
conducted to determine the subcellular localization of MUT and 
WT proteins following transfection with SYCP2 recombinant 
plasmids. It was observed that MUT SYCP2 was present in both 
the cytoplasm and nucleus, whereas WT SYCP2 was only found 
in the nucleus (Figure 4) [24].

Tan L, et al.
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Figure 3: The effect of the mutation on SYCP2 expression. (A) 
Relative SYCP2 mRNA expression of HEK293T cells after 
transfected with wide-type (WT) and mutant (MUT) plasmids 
(ns, no significance). (B-C) Western blotting tested the SYCP2 
protein expression of wild-type and mutant SYCP2 gene in 
HEK293T cells (*P=0.0101). The control group is HEK293T 
cells transfected with blank plasmid.

Figure 4: Immunofluorescence staining revealed the subcellular
location of Wide-Type (WT) and mutant (MUT) SYCP2 in
HEK293T cells. Wide-type SYCP2 was exclusively located in
nucleus. Mutant SYCP2 not only located in nucleus but also in
cytoplasm as red arrow indicated. Confocal images of EGFP
(green), DAPI nuclear staining (blue) and merged signals.

alteration causes a reduction in the production of the SYCP2 
protein, alteration in its distribution within the cell and 
consequently leads to sperm disorders and inability to conceive. 
The results of our study emphasize the crucial function of 
SYCP2 in spermatogenesis and broaden the range of genetic 
variations associated with NOA. In addition, our findings offer 
fresh perspectives on NOA development [25].

The gold standard investigation for male infertility is a semen 
analysis conducted following the guidelines of the World Health 
Organization (World Health Organization, 2010). In this family, 
the proband was infertile for more than one year without taking 
precautions. Semen analysis displayed that the sperm 
concentration was zero, which conformed to clinical 
azoospermia. Using WES, we identified a heterozygous SYCP2 
frameshift variant (c.1937_1942delTAAATA) in the 
proband. Sanger sequencing verified his mother as a 
SYCP2 (c. 1937_1942delTAAATA) heterozygote. The SYCP2 
mutation in the proband was derived from his mother. 
According to the lineage map, the inheritance mode was 
dominant. This is consistent with the inheritance mode of an 
azoospermic family reported by Schilit in 2019, in which 
the proband and his mother were SYCP2 (c.2793_2797del) 
heterozygote. Because of the specificity of SYCP2 protein 
expression in the human body and the genital differences 
between males and females, SYCP2 mutations cause male 
infertility while females are fertile. Consequently, it is 
plausible that most SYCP2 mutations are inherited 
maternally. However, it is notable that Xu et al. reported a 
male infertile patient with a homozygous mutation in SYCP2 
(c.2689_2690insT) presented with NOA, whose parents were 
SYCP2 (c.2689_2690insT) heterozygote. This finding 
contradicts the results of the current study. We believe that 
haploinsufficiency and incomplete dominance may be the 
reasons. As a result of different expressivity caused by SYCP2 
encoding errors and deletions, disease manifestations vary from 
oligozoospermia to azoospermia. The differences between the 
present study and animal experiments can also be explained by 
this notion. In a previous study, male Sycp2-/- mice were 
infertile, whereas Sycp2+/- mice were fertile. This may be due to 
human haploinsufficiency and/or mouse incomplete 
dominance. Furthermore, the interplay between genes and the 
environment is intricate and this collaboration may collectively 
govern the manifestation of various phenotypes. Moreover, there 
may be certain compensatory mechanisms in mice that are 
incompletely understood, but they still play an equal role in 
shaping the ultimate phenotype [26,27].

SYCP2 encodes synaptonemal complex protein 2, which 
participates in meiosis in sexually reproducing organisms. 
Meiosis is a unique cellular fission process that decreases 
chromosome count by half via two consecutive rounds of 
meiotic division, forming haploid gametes, SYCP2 facilitates the 
formation of pairs of homologous chromosomes by constructing 
SC during meiosis. The highly conserved protein structure 
known as SC is crucial in connecting homologous chromosomes 
in various species. The SC consists of three components: the 
Central Component (CC), Transverse Filaments (TF) and 
Lateral Elements (LE). Among them, the LE mainly comprises 
SYCP2 and SYCP3 proteins. The interaction between these two 
proteins forms a central core for the chromosome axis, providing

Tan L, et al.

DISCUSSION
In the current study, we discovered a new deletion mutation c. 
1937_1942delTAAATA in SYCP2 from a family with NOA 
affected  by one  person. It has been verified that this genetic
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CONCLUSION
In summary, we detected a heterozygous deletion mutation (c. 
1937_1942delTAAATA, p. Ile646_Asn647del) in SYCP2 
through WES in a NOA family. Functional in vitro studies 
revealed the influence of the new variant on SYCP2 protein 
localization and expression. These results suggest that the 
SYCP2 novel mutation leads to abnormal meiosis by affecting 
SC formation, ultimately resulting in male NOA. This 
investigation is advantageous in enhancing our understanding 
of the molecular foundation of meiosis abnormality and the 
pathological mechanism of NOA.
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