
Volume 4 • Issue 1 • 1000128J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Muthusamy and Badurudeen, J Inform Tech Softw Eng 2014, 4:1
DOI: 10.4172/2165-7866.1000128

Research Article Open Access

A New Approach to Derive Test Cases from Sequence Diagram
Muthusamy MD* and Badurudeen GB
Department of Computer Science and Engineering, Sona College of Technology, Salem-636005, Tamil Nadu, India

*Corresponding author: Muthusamy MD, Department of Computer Science and
Engineering, Sona College of Technology, Salem-636005, Tamil Nadu, India, Tel:
91-427-409999; E-mail: dhineshmsc2011@gmail.com

Received February 19, 2014; Accepted May 01, 2014; Published June 09, 2014

Citation: Muthusamy MD, Badurudeen GB (2014) A New Approach to Derive Test
Cases from Sequence Diagram. J Inform Tech Softw Eng 4: 128. doi:10.4172/2165-
7866.1000128

Copyright: © 2014 Muthusamy MD. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Keywords: Model based testing; Sequence diagram; SDG; Test case
Generation; OCL

Introduction
Testing performs an important role in software engineering, which

only ensures the quality of software being produced. Most of the testing
methodologies involves in the Black box approach, while compared to
design level testing. Before testing, the development life cycle reduces
the difficulties on implementation level.

In model based testing, the test cases are generated from the
abstract representation of the model. The Abstract test suites are not
executed against system under test because it is needed to be described
from the corresponding abstract test suite. The effect of model based
testing is it offers automation of testing. If a model is readable one then
it should have a well defined behavioral interpretation. During testing
the model and its behavioral specification is given to model checker.
After the verification the paths were used for generating test cases. Here
a little knowledge of the coding is needed for the tester instead of brief
knowledge about coding in testing. They must to understand the UML
models which is used for System under Test.

Model based testing provides the conformance with the UML
diagrams. In the case of design level there are various diagrammatic
representations used to represent the operations with operational
requirements. Here we are using the Use case diagrams to get the
requirements involved in the system and tracing the important
scenarios to sequence diagram and converting in to sequence diagram
graph. By using the sequence diagram graph test cases are generated.

Related Work
There are many of researchers proposed many methodologies

for scenario level test case generation. Most probably they used black
box approaches and they do not considered architectural behavioral
designs. In the software development life cycle from requirement
specification to actual product, the verification and validation takes
place. Probably the products where verified and validated based upon
their requirement specifications. More recently model based testing
become as popular. Marketing proposes various methodologies in
model based testing. Model paradigm contains state based notations,
transition based notations, history based notations, functional
notations, operational notations and criteria for test selection, in which
includes data coverage, requirement based coverage, fault based criteria
and about the different types of tools used in model based testing [1].

Combination of State machine diagrams and Class diagrams [2]
used to generate automatic test cases using OCL expressions. This
algorithm is used with ParTeG. Static analysis tools such as OCLE
[Chiorean] and USE [Richter’s] [3] can be used to analyze structural

properties of Class Models. This approach removes manually simulating
the behavior of Class Models. Instead of that it provides a light weight
approach to check scenarios.

AGEDIS [4] includes an integrated environment for modeling test
generation, test execution and other related activities for industries.
This is widely accepted tool by industries, but it has some drawbacks.
Briand and Labiche [5] describe the TOTEM (Testing Object
Oriented Systems with the Unified Modeling language) system testing
methodology. System test requirements are derived from early UML
analysis artefacts such as, use case diagrams and sequence diagrams
associated with each use case and class diagram.

For testing different aspects of object interaction, several researchers
have proposed different technique based on UML interaction diagrams
[6-10] , Bertolino and Basanieri proposed a method to generate test
faces using the UML use case and Interaction diagrams (specifically,
the Message Sequence diagram). It basically aims at integration testing
to verify that the pre-tested system components interact correctly.
They use category partition method and generate test cases manually
following the sequences of messages between components over the
Sequence Diagram.

From the use case diagram, the Use Case Dependency Graph
(UDG) and Concurrent Control Flow Graph (CCFG) from
corresponding sequence diagrams for test sequence generation [11].
UML state charts provide a solid basis for test generation in a form that
can be easily manipulated [12]. The traceability between UML Models
provides reengineering [13] it increases the test case coverage in test
case generation. Bertolino and Maechetti [14] proposed and approach
to generate test cases even the software’s are partially model. The OCL
[15] is a Generalized Model free Language and it is possible to combine
programming languages and OCL in UML model processing. It is
model language primarily meant for expressing constraints in model.
Panthi V and Mohapatra DP [16] propose an approach to generate
test cases from sequence diagram by generating extended finite State
Machine for the diagram. They proposed an algorithm named as
ATGSD algorithm, which focuses on the object coverage Message

Abstract
Testing is an important area of software engineering. There are various types of testing methodologies followed

in various stages of Software Development Life Cycle (SDLC). We are proposed a novel approach for generating test
cases from UML sequence diagram. Our approach consists of transforming sequence diagram in to sequence diagram
graph and generating test cases from SDG. The sequence diagram is prepared based on the Use Case diagram in
which describes the overall view of the system. The traceability between the models is provided by using Relational
Definition Language.

Journal of
Information Technology & Software Engineering

Journal
of

 In
fo

rm
at

ion

 Te
chnology & Softw

are Engineering

ISSN: 2165-7866

http://dx.doi.org/10.4172/2165-7866.1000128

Volume 4 • Issue 1 • 1000128J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Muthusamy MD, Badurudeen GB (2014) A New Approach to Derive Test Cases from Sequence Diagram. J Inform Tech Softw Eng 4: 128.
doi:10.4172/2165-7866.1000128

Page 2 of 4

sequence Path Criterion, Full Predicate Coverage and Boundary testing
criteria. Traceability [17] between the models, which ever constructing
from the UML can be done easily.

Proposed Approach
The proposed approach describes the following steps to generate

test cases from the sequence diagram. Given a sequence diagram
(SD), in which describes the detailed interaction of use cases and the
actors involved in the system. We transform it in to Sequence Diagram
Graph (SDG), the sequences are traced from the use case diagram. The

sequence diagram is built with Object Constraint Language (OCL),
which is a generalized language proposed for UML Models by object
management group.

The OCL gives the input condition and output condition in the name
of pre condition and post condition, which represents before execution of
the state and after execution of the state of the behavior involved in the
sequence diagram. The sequence diagram is converted into XML format.
The XML file is converted into a Graphical notation called as tree structure.
The structure is named as sequence dependency graph (SDG).

We then traverse the sequence diagram graph and generate
test cases based on path coverage, functional coverage criteria. An
algorithm is proposed for generating test cases. The algorithm used
for traversing the graph is described in detail in the following section.
The following architecture such that Figure 1 describes the schematic
representation of proposed approach.

Architectural description

Use case diagram: The use case diagram describes the overall
system, which contains the actors and use cases in the system in a
sequence. The external persons or actors who will interact with each
other through use cases.

Sequence diagram: The sequence diagram describes the detailed
description and interaction with in the use case and actor. The
interactions are written in OCL (Object Constraint Language), which
is a generalized model free language. So this allows the user easily to
understand about the system interactions. The sequence diagram is
shown in the Figure 2 for ATM system.

Tool conversion: The sequence diagram can be exported into an
XML/XMI format using an XML parser. This file contains all the XML
tags that describe the sequence diagram. The diagram parameters and
its values defined in XML format.

Sequence diagram graph: The sequence diagram graph defines the
activities as nodes and the interactions in the form of paths. The SDG
will look as an acyclic graph notation. By using this SDG the test cases
are generated. The sequence diagram graph has the graphical structure
like Figure 3. It shows the graphical notation of the sequence diagram
of ATM system.

Test case generation: The test case is generated by visiting the
nodes and edges in the SDG. We were proposed the algorithm called
as Iterative Deepening Depth first search algorithm (DFS). Using this

USECASE
DIAGRAM

TOOL
CONVERSION

SEQUENCE
DIAGRAM

SEQUENCE
DIAGRAM.XML

SEQUENCE
DIAGRAM

GRAPH(SDG)

TEST CASE
GENERATION

►▬

►
▬

►
▬

►
▬

►
▬

Figure 1: System Architecture.

operator panel ATM Cash Dispenser Bank

1 : Switch On()

2 : perform start up()

3 : get initial cash()

4 : Loading Cash()
5 : set cash()

6 : Open Connection()

Figure 2: Sequence diagram for ATM Banking System.

Figure 3: Sequence Dependency Graph for the sequence
diagram.

Volume 4 • Issue 1 • 1000128J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Muthusamy MD, Badurudeen GB (2014) A New Approach to Derive Test Cases from Sequence Diagram. J Inform Tech Softw Eng 4: 128.
doi:10.4172/2165-7866.1000128

Page 3 of 4

algorithm the test cases are generated, which reduces the time taken
to visiting the interactions which takes long time. It increases the path
coverage criteria. The Table 1 shows some of the sample test cases
generated from the SDG depending on the condition.

An example

We have taken the example of ATM Banking System for generating
test cases. The user before entering into the system, the cash dispenser
will be loaded by the authorities of respective bank with the existing
amount of dispenser.

For that the how could be the test cases are generated was shown
here above in the test case table. Initially the sequence diagram for
the ATM Banking system will be drawn in the Eclipse software
development kit. The necessary UML plug-in were installed into
the Eclipse before generating the diagram. The Eclipse supports the
generation of UML diagrams and it also supports the OCL expressions.
The complete scenario can be generated for ATM banking system with
the use of Eclipse. This diagram contains the sequence of interactions
between the operator panel, ATM machine, cash dispenser and bank
authorities.

The sequence of interactions shown in the ATM banking system
sequence diagram can be converted into an XML format. The
conversion of XML file can be done automatically by using the XML
file conversion option already available in the Eclipse. The XML file
represents the sequence of interactions with its functional notations. It
bridges the gap between different of interactions among the sequences.

The XML file of sequence diagram will be converted to sequence
dependency graph as well as sequence diagram graph. The sequences of
activities in the ATM sequence diagram are represented as nodes and
the interactions among those nodes are represented as paths between
the nodes. The test cases are generated from the sequence dependency
graph by visiting the nodes and paths.

The final output of the system will be number of nodes visited
and paths visited by the given condition satisfaction criteria. During
visiting the nodes some of the nodes and paths are repeated to satisfy
the condition criterion. The test case generation table (Table 1) shown
here is for understanding purpose. The output will not be look like
as we shown in the Table 1. So that the condition looked on the path
during test case generation is shown in table.

Algorithm used for test case generation

Procedure idvisit (G, S, Goal)

Inputs

G: Graph with nodes N and paths A

S: Set of start nodes

Goal: Boolean functions on states

Output

Paths from S to a node for which is true

Test case condition

Local

Natural failure Boolean

Bound: integer

Procedure dbsearch (n0 ...nk, b)

Inputs

n0,.....,nk,..Paths:

b: integer, b>=0

Output

Path to goal of length k+6

If (b>0) then

For each path nk, n ∈ A do

dbsearch(n0,...,nk, n b-1)

Else if (goal(nk)) then

return no,......nk

Else if (nk has any neighbours)

natural failure←false then

bound ← 0

Repeat

natural_failure ← true

dbsearch ({S:s ∈ S} bound)

bound ← bound +1

until natural_ failure

Return

The test case generation is starts from the initial node s which is a
subset of S. the nodes in the graph are starts from n0 ends with nk, which
is called as last node. During visiting of paths the nodes has more paths
to visit the bound is increased as bound←bound+1. When the condition
is not satisfied, then the node will be terminated from traversing. This
algorithm is called as iterative deepening depth first search algorithm, in
which combines the features of basic depth first search and breadth first
search algorithms to make effective test case generation. This algorithm
takes less time to visit the nodes when compared to other algorithms. A
largest tree comprised of several nodes and paths, it can be handled by
iterative deepening depth first search algorithm effectively. The existing
basic depth first search algorithm requires medium sized graphs to traverse.

Test case id Starting node Dependent node Input to the node Expected result Actual result
1 A B Switch on System loading System loading
2 B B Perform start up Performing system start up Performing System Start up
3 B A Get initial cash Loading Cash Loading initial cash
4 A B Load initial cash Getting Cash Basic Balance Loaded

5 B C Set basic cash Setting basic balance
Balance
Loaded

6 B D Open Connection System Loading Connection Launched

Table 1: Test Case Generation from SDG.

Volume 4 • Issue 1 • 1000128J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Muthusamy MD, Badurudeen GB (2014) A New Approach to Derive Test Cases from Sequence Diagram. J Inform Tech Softw Eng 4: 128.
doi:10.4172/2165-7866.1000128

Page 4 of 4

This algorithm will not handle large sized graphs and it takes more time to
traverse on the space.

Calculations in generating test case from sequence dependency
graph (SDG)

After generating test cases from the SDG, the traversing of nodes
and paths are calculated by the following formulae.

The worst case performance for explicit graphs traversed without
repetition is calculated as

(| |)o E

Where E is the number of edges

The order of visiting nodes without repetition is calculated as

Where b - branching factor and d - depth

(| |)do b
Traversing the entire graph without repetition (visiting the longest

length paths) calculated as

(| |)o v
Where v-number of vertices

This formula includes without eliminating the visiting of duplicate
nodes.

Test case generation from SDG

The sequence diagram depicts the behavior of various sequences
of the System under Test (SUT). Among all other UML diagrams the
sequence diagram only depicts the behavior among the sequences in
a timely manner. The immediate request and responses of system are
modeled by sequences for test case generation. From the sequence
diagram graph when an object invokes another object the system
predicts whether the right sequence of messaging is followed to
accomplish an operation. The SDG eventually covers all the paths from
the starting node to final nodes well as message sequence paths. We
are going to use the iterative deepening depth first search algorithm in
the sequence diagram graph to generate test cases. The complete path
coverage, Branch coverage can be predicted through this algorithm.
The interaction which takes long time between the paths is found by
this algorithm.

Conclusion
We are proposed a novel approach to generate test cases from

sequence diagram by generating sequence diagram graph. The input
of pre condition and post condition retrieved from Use case diagram
and OCL expressions. These things were stored in SDG. The iterative
deepening depth first search algorithm can handle the sequence of
interactions among the sequences, in which takes long time.

References

1. Mark U, Alexander P, Legeard B (2010) Taxonomy of Model Based Testing
Approaches, Softw. Test. Verif. Reliab, John Wiley & sons Ltd.

2. Stephan W, Schlingloff BH (2008) Deriving Input Partitions from UML Models
for Automatic Test Generation, Lecture Notes in Computer Science 5002: 151-
163.

3. Yu L, France RB, Ray I (2008) Scenario-based static analysis of UML class
models. Lecture Notes in Computer Science 5301: 234-248,Springer-
VerlagBerlin Heidelberg.

4. Hartman A, Nagin K (2004) The AGEDIS Tools for Model Based Testing. IBM
Haifa Research Laboratory, ACM.

5. Briand LC, Labiche Y (2001) A UML – Based Approach to System Testing,
Proceedings of the 4th International Concepts and Tools, Springer-Verlag,
London.

6. Abdurazik A, Offutt J (2000) Using UML Collaboration diagrams for static
checking and test generation, Proceedings of the Third International
Conferences on the UML, Lecture Notes in Computer Science, Springer-Verlag
GmbH, York, UK 939: 383-395.

7.	 Lettrari M, Klose J, Ruder A (2001) Scenario-Based Monitoring and Testing of
Real Time UML Models, Proceedings of UML, Springer-Verlag.

8. Basanieri F, Bertolino A, Marchetti E (2002) The Cow Suite approach to planning
and deriving test suites in UML projects, Proceedings of the 5th international
Conference on the UML, Lecture Notes in Computer Science 2460: 383-397.

9. Tonella P, Potrich, (2003) A Reverse Engineering of the Interaction Diagrams
from C++ code, Proceedings of IEEE International conference on Software
Maintenance.

10.	Fraikin F, Leonhardt T (2002) Siditec-testing based on sequence diagrams,
Proceedings of 17th IEEE International conference on Software Engineering.

11. Swain SK, Mohapatra DP, Mall R (2010) Test Case Generation Based on Use
Case and Sequence Diagram, International journal of Software Engineering.

12.	Nebut C, Fleurey F, Traon YL (2006) Automatic Test Generation: A use Case
Driven Approach, IEEE Transactions on Software Engineering.

13.	Offutt J, Abdurazik A (1999) Generating Tests from UML Specifications,
Lecturer Notes in Computer Science, Springer-Verlag Berlin Heidelberg.

14.	Bertolino A, Marchetti E, Muccini H (2005) Introducing a Reasonably Complete
and Coherent Approach for model-based Testing, Electronic notes in
Theoretical computer science, Elsevier.

15.	Sikarla M, Peltonen J, Selonen P (2004) Combining OCL and Programming
Languages for Model Processing, Electronic Notes in Theoretical Computer
Science, Elsevier 102: 175-194.

16.	Panthi V, Mohapatra DP (2012) Automatic Test Case Generation Using
Sequence Diagram, International Journal of Applied Information Systems 174:
277-284.

17.	George M, Hellmann KPF, Knahl M, Bleimann U, Atkinson S (2012) Traceability
in Model Based Testing, Future Internet, 4: 1026-1036.

http://onlinelibrary.wiley.com/doi/10.1002/stvr.456/abstract
http://onlinelibrary.wiley.com/doi/10.1002/stvr.456/abstract
http://link.springer.com/chapter/10.1007%2F978-3-540-69073-3_17#page-1
http://link.springer.com/chapter/10.1007%2F978-3-540-69073-3_17#page-1
http://link.springer.com/chapter/10.1007%2F978-3-540-69073-3_17#page-1
http://link.springer.com/chapter/10.1007/978-3-540-87875-9_17#page-1
http://link.springer.com/chapter/10.1007/978-3-540-87875-9_17#page-1
http://link.springer.com/chapter/10.1007/978-3-540-87875-9_17#page-1
http://www-tr.watson.ibm.com/haifa/projects/verification/mdt/papers/p144-hartman.pdf
http://www-tr.watson.ibm.com/haifa/projects/verification/mdt/papers/p144-hartman.pdf
http://dl.acm.org/citation.cfm?id=719446
http://dl.acm.org/citation.cfm?id=719446
http://dl.acm.org/citation.cfm?id=719446
http://link.springer.com/chapter/10.1007%2F3-540-40011-7_28#page-1
http://link.springer.com/chapter/10.1007%2F3-540-40011-7_28#page-1
http://link.springer.com/chapter/10.1007%2F3-540-40011-7_28#page-1
http://link.springer.com/chapter/10.1007%2F3-540-40011-7_28#page-1
http://link.springer.com/chapter/10.1007/3-540-45441-1_24#page-1
http://link.springer.com/chapter/10.1007/3-540-45441-1_24#page-1
http://www1.isti.cnr.it/ERI/eda_marchetti/papers/BBM02.pdf
http://www1.isti.cnr.it/ERI/eda_marchetti/papers/BBM02.pdf
http://www1.isti.cnr.it/ERI/eda_marchetti/papers/BBM02.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1235418&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1235418
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1235418&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1235418
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1235418&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1235418
http://www.ijse.org.eg/Content/Vol3/No2/Vol3_No2_2.pdf?origin=publication_detail
http://www.ijse.org.eg/Content/Vol3/No2/Vol3_No2_2.pdf?origin=publication_detail
http://hal.inria.fr/docs/00/10/27/47/PDF/D647.PDF
http://hal.inria.fr/docs/00/10/27/47/PDF/D647.PDF
http://cs.gmu.edu/~offutt/rsrch/papers/uml99.pdf
http://cs.gmu.edu/~offutt/rsrch/papers/uml99.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.7815
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.7815
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.88.7815
https://practise.cs.tut.fi/files/publications/inari/ENTCS04_Siikarla.pdf
https://practise.cs.tut.fi/files/publications/inari/ENTCS04_Siikarla.pdf
https://practise.cs.tut.fi/files/publications/inari/ENTCS04_Siikarla.pdf
http://link.springer.com/chapter/10.1007%2F978-81-322-0740-5_33#page-1
http://link.springer.com/chapter/10.1007%2F978-81-322-0740-5_33#page-1
http://link.springer.com/chapter/10.1007%2F978-81-322-0740-5_33#page-1
http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CC8QFjAB&url=http%3A%2F%2Fwww.mdpi.com%2F1999-5903%2F4%2F4%2F1026%2Fpdf&ei=oHiMU6TpBMaIuATS64Jo&usg=AFQjCNHpc8sXHLR_tkJqkMWQundkQ5RP4g&bvm=bv.67720277,d.c2E&cad=rja
http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CC8QFjAB&url=http%3A%2F%2Fwww.mdpi.com%2F1999-5903%2F4%2F4%2F1026%2Fpdf&ei=oHiMU6TpBMaIuATS64Jo&usg=AFQjCNHpc8sXHLR_tkJqkMWQundkQ5RP4g&bvm=bv.67720277,d.c2E&cad=rja

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Related Work
	Proposed Approach
	Architectural description
	An example

	Conclusion
	Table 1
	Figure 1
	Figure 2
	Figure 3
	References

