OPEN aACCESS Freely available online

Research Article

A Multi-Objective Clustered Input Oriented Salp Swarm Algorithm in

Cloud Computing
Juliet A Murali'*, Brindha T"

IDepartment of Information Technology, University of Noorul Islam Centre for Higher Education, Kanyakumari, Tamilnadu,

India

ABSTRACT

The Infrastructure as a Service (IaaS) cloud computing service model facilitates on-demand sharing of computing
resources over the internet. The scheduling of these resources is the main dispute that has to be handled. Recently,
different swarm-based algorithms have been implemented for scheduling. The main intention of the cloud
scheduling problem is to satisfy user requirements by allocating resources. This paper proposed a two-phase task
scheduling algorithm named Clustered Input Oriented Salp Swarm Algorithm (CIOSSA). In the first phase, named
Task Splitting Agglomerative Clustering (TSAC), the tasks are categorized based on the deadline and the output
generated by TSAC becomes the input to the next phase. The Input Oriented Salp Swarm Algorithm (IOSSA) is
used for the scheduling process. It is a multi-objective version of the fundamental Salp Swarm Algorithm (SSA)
which experience slow convergence rate. Here a fundamental version SSA is proposed with two different objectives
satisfied by two separate leaders. The use of two leaders instead of one expands the search space of the optimization
problem. This proposed algorithm achieved efficient utilization of resources, which in turn reduced the cost. It also
improves the schedule make span. The experimental analysis is performed in cloudsim. The simulation result shows

that the proposed CIOSSA framework will produce better results than the existing algorithm.

Keywords: Cloud computing; Clustering; Resource allocation; Scheduling; Swam algorithms

INTRODUCTION

Cloud computing makes possible the on-demand accessing
of cloud computing resources like disk space, virtual Central
Processing Units (vCPU), Random Access Memory (RAM), etc.
over the internet. These resources are in the outline of a virtual
machine and are deployed in physical machines. Three trendy
service models in cloud computing are Platform as a Service
(PaaS), Software as a Service (SaaS) and Infrastructure as a Service
(IaaS). The IaaS service quality and cost of cloud computing are
standing on the resource allocation process and the resource
provider [1].

The allocation of resources to customers should be optimal.
Different resource management strategies like the centralized
model, hierarchical model can be used for the efficient allocation
of resources [2]. Clustering is the method of dividing data points
into different groups. Clustering is classified as hierarchical
clustering and partial clustering. Hierarchical is subdivided into
agglomerative and divisive [3-5].

One of the main disputes to handle carefully in cloud computing
is task scheduling and will affect the performance of resource
allocation in clusters of the cloud environment. The chief goal is
to decrease the makespan of schedule that will cause the efficient
utilization of resources. The second objective is to reduce costs.
Scheduling is an optimization problem and is a Nondeterministic
Polynomial (NP) time hard problem. Nearly optimal solutions
are obtained for optimization problems by the introduction of
heuristic algorithms.

Simplifier Swarm Optimization (SSO), Particle Swarm
Optimization (PSO) and Mean Grey Wolf Optimization
(MGWO) algorithm, Salp Swarm Algorithm (SSA), etc. are
swarm intelligence algorithms. These meta-heuristic swarm-based
algorithms will give a near-optimal schedule that will attain the
above-mentioned objectives [6-15].

Some existing methodologies proposed for resource allocation
are Kumar et al., presented a swarm-grounded meta-heuristic

method called Generalized Ant Colony Optimizer (GACO) [16].

Correspondence to: Juliet A Murali, Department of Information Technology, University of Noorul Islam Centre for Higher Education, Kanyakumari,

Tamilnadu, India, E-mail: jullietjulli123@gmail.com

Received: 12-Aug-2024, Manuscript No. JTCO-24-33472; Editor assigned: 14-Aug-2024, PreQC No. JTCO-24-33472 (PQ); Reviewed: 28-Aug-2024,
QC No. JTCO-24-33472; Revised: 04-Sep~2024, Manuscript No. JTCO-24-33472 (R); Published: 11-Sep~2024, DOI: 10.35248,/2376-130X.24.10.225

Citation: Murali AJ, Brindha T (2024). A Multi-Objective Clustered Input Oriented Salp Swarm Algorithm in Cloud Computing.] Theor Comput

Sci. 10:225

Copyright: © 2024 Murali AJ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

J Theor Comput Sci, Vol.10 Iss.3 No:1000225

Murali AJ, et al.

This fusion method comprised of easy ant colony optimization
and global colony optimization idea.

Malekloo et al., proposed Multi-objective ACO (MACQO) method
for Virtual Machine (VM) assignment with consolidation [17].
This method attains a trade-off among system performance, energy
efficiency, along with Service Level Agreement (SLA)-compliance.
Abdel-Basset et al., centers on VM assignment issue regarding
to the obtainable bandwidth that is equated as changeable sized
bin stuffing issue [18]. Furthermore, a bandwidth allotment plan
is introduced and fused with an enhanced alternative of Whale
Optimization Algorithm (WOA).

The task scheduling algorithm grounded on bacterial foraging
optimization to lessen the inoperative time of VMs while the
load balancing along with runtime minimization have arised
[19]. Saleh et al., gave the Improved Particle Swarm Optimization
(IPSQO) algorithm to offer the most favorable allotment for a great
task count [20]. This is attained by dividing the suggested tasks
into batches in a vibrant way. The resources utilization situation
is measured in all construction of batches.

Patel et al., focused on reducing on the whole makespan with
useful load balancing via forming the swarm intellect of social
spider by messy inertia weight grounded arbitrary assortment
[21]. The projected algorithm stops the local convergence plus
investigates the worldwide intelligent penetrating in deciding the
finest optimized VM for the user mission.

Rana et al., proved a meta-heuristic approach to attain optimal
results. In a heterogeneous atmosphere, where millions of
resources can be owed and deallocate in a part of time, current
metaheuristic algorithms execute fine owing to its vast power
[22]. Here a theoretical structure for solve multi-objective VM
scheduling issue was presented by meta-heuristic WOA. Haghighi
et al., by virtualization method provided a fusion method for
resource administration [23]. This method exploited k-means
clustering for mapping job as well as active consolidation process,
enhanced through micro-genetic algorithm.

OPEN aACCESS Freely available online

Gawali et al., discussed about task scheduling and resource
allocation [24]. A heuristic method was proposed to carry out
task scheduling and resource allotment. Gawali et al., gave a
Standard Deviation rooted Modified Cuckoo Optimization
Algorithm (SDMCQOA) for scheduling the tasks with two phases
[25]. In the primary phase, the sample preliminary populations
were estimated among the accessible count of task’s population.

The proposed task scheduling algorithm is titled as CIOSSA. The
basic framework followed is hierarchical modeling. The following

are the key goals of CIOSSA:

e The proper utilization of resources that scales down the
wastage of computing power by checking the resource
availability at the time of scheduling.

e A preprocessing clustering mechanism has been introduced
to give priority to tasks based on the current resources.

e The scheduling is based on resource requirements and the
priority of tasks, so the First in First out (FIFO) ordering
scheme is changed.

e An improved version of SSA is recommended in this paper,
which makes use of two separate leaders.

MATERIALS AND METHODS

The proposed method follows a hierarchical modeling approach
with some modifications. It also uses the hierarchical clustering
method for task categorization and a modified SSA for scheduling.

Hierarchical modeling approach

In the hierarchical modeling approach, the resource allocation
and management are maintained masterslave structure. The
master manages users to request and resources. The VMs are
managed at a cluster level. The VMs are deployed in Physical
Machines (PM). The virtual resources allocation is done at the
VM level [4]. The basic diagrammatic representation is shown in
Figure 1.

Cluster

Kl - VI VI

Figure 1: Hierarchical model for resource allocation and management in cloud computing. Note: VM: Virtual Machine.

Ilaster Lewel

Cluster Lewel

Cluster

W Level

J Theor Comput Sci, Vol.10 Iss.3 No:1000225

Murali AJ, et al.

The PMs that are involved in cloud computing services are
categorized as hot, warm and cold. Hot systems are those having
active VMs able to run jobs at this moment, warm means VMs
are running not able to run the job at this moment and cold
means the VMs are turned off. The cold state requires more time
to turn to active mode as compared to warm.

The existing hierarchical model has some shortcomings [1]. Here
considering only one of the active PM states, the PMs may be in
other states. The scheduling policy used here is FIFO during the
time of scheduling jobs.

The availability of the required amount of resources is not
checked during the allocation job. During the execution time,
only the deficiency of resources is understood.

All tasks in the job are allocated to a single PM. The resource
pool contains a set of PMs, each PMs contains some free VMs.
Suppose a new job comes, sufficient VMs for executing that
job are distributed in different PMs, not in a single PM so the
allocation is not possible the job has to wait.

Hierarchical clustering

The hierarchical clustering separating data points into different
groups based on the same measure of similarity. Initially, each
data point is a cluster of its own. Then find out the least distance
between two clusters and bring them together. This is represented
in a treelike structure called dendrogram we terminated when we
are left with one cluster. The key steps in hierarchical clustering
are:

e Measure the similarity distance between different data
points.

e Grouping or combine the nearest clusters.
e Stop grouping until termination criteria reached.

In this method, the data points are distributed over Euclidean
space and Euclidean distance measure is used to measure the
distance between clusters.

Salp swarm algorithm

SSA is a nature stimulated algorithm and imitates the behavior of
salp in oceans or seas. Their food source identification is a group
activity and forms a salp chain. The chain contains a leader at the
front and others are followers. The followers will change their
position based on the inspiration from the leader. In general, the
possible solutions mean population serves as the salp chain the
position of the best solution in the population is denoted as the
food source position (F) in the chain denotes the best solution
for the problem. Each solution has n-dimensions, where n is the
count of problem variables. Two-dimensional matrix is used to
store the position of all salps, which is the x and y coordinates.
This concept can be mapped into scheduling problems and
Mirjalili et al., tested SSA on several mathematical optimization
functions and observe that SSA is an effective approach for
scheduling problems [10].

The main fault identified during the analysis of SSA concerning
cloud scheduling problems is the slow convergence rate. The goal
of searching ability is also minimized.

Problem description

The SSA is good enough for cloud scheduling problems [11]. A
resource allocation algorithm named Clustered Input Oriented

Salp Swarm Algorithm (CIOSSA) based on SSA is proposed.

J Theor Comput Sci, Vol.10 Iss.3 No:1000225

OPEN aACCESS Freely available online

It minimizes makespan, which in turn reduces resource
utilization and the cost of resources. In this model, independent
and heterogeneous jobs are considered for scheduling. A
heterogeneous workload means the jobs are requesting different
amounts of resources, and more than one job is in the PM's
waiting queue.

Basic architecture

Cloud computing makes possible the on-demand accessing of
cloud computing resources like disk space, vCPU, RAM, etc.
These resources correspond to virtual machines they are deployed
in physical machines. The Cloud Service Providers (CSP) are
availing the cloud computing services to customers as their
request. The IaaS service quality and cost of cloud computing
are based on the resource allocation process and the resource
provider. The allocation of resources to customers should be
optimal.

The main intention of the cloud scheduling problem is to
satisfy user requirements by fruitfully allocating resources.
The final solution schedule is optimal or nearoptimal.
The customer's request represented as heterogeneous tasks
T={T,,T,,T,,...T,} . These tasks carried out by the allocation of
VMs, say ¥M = {¥M,,VM,,VM,,..vM,} The chief goal of the proposed
framework is to create a resource allocation algorithm in the
cloud environment. The proposed resource allocation algorithm
named CIOSSA provides efficient utilization of resources and
reduces the cost.

The architecture of the proposed method is verified in Figure 2.
It is modeled as entry part, clustering phase and optimization
phase. The task is entered into the task entry stage. The clustering
stage considers the tasks in the entry queue and categorizes them
into low range and high range tasks. The deadline is the margin
for this categorization and is described in task entry (Figure 2).

Clustering and optimization module

Task entry
Task Fesource Ewent/
categorization [—m Allocation Algorithim
Job | TaskEntry (TBAC) (10834) Meat
request Quene i i Opa?r 7
+|:|:|I| Schedule
Dreadline Cost availability Data
& Simnilar of resources & Collection
Function Fitness function / Function
Evaluation

Figure 2: Architecture of CIOSSA framework. Note: CIOSSA:
Clustered Input Oriented Salp Swarm Algorithm; TSAC: Task
Splitting Agglomerative Clustering; IOSSA: Input Oriented Salp
Swarm Algorithm.

In the proposed framework the clustering scheme is the variation
of hierarchical agglomerative clustering named Task Splitting
Agglomerative Clustering (TSAC). Though several existing works
are identified the greatest intention of this stage is to identify
the task's urgency. In other words, this stage gives some way of
priority to tasks based on the deadline. This will change the First
Come First Serve Scheduling (FCFS) policy of task execution.

Optimization is the next important stage in the framework. It is
obtained by using the improved SSA called IOSSA. It is one of the
swarm-based techniques that incorporate the objective function
during task scheduling. At the time of resource allocation, the

Murali AJ, et al.

resource availability is checked across the user requirement
efficiently than existing schemes.

TSAC explains the classification of tasks from the task entry
phase by incorporating clustering. The categorized tasks from the
clustering phase are taken as input by the optimization stage that

is described detailed in IOSSA

Problem formulation

The chief principle of the proposed method is to create a task
scheduling algorithm in the cloud environment. The main
objectives during the implementation are makespan and cost.
Optimal task scheduling will be the one that optimizes the make
span of the schedule S. Makespan is termed as the quantity of
time from start to finish for carrying out a set of jobs i.e. it is the
utmost completion time of every jobs. The main objective of the
proposed framework is formulated using Equations (1-3):

Obj(S) = p1x Objy(S) +(1- 1) x Obj, (S) (1)

Where, 0<p<1
Obj,(S) = min(Makespan(S)) Q)

Makespan(S) = max %,

i=1,2,m

(VM (CTT)))-min%,_,, ,(VM,(STT))) (3)

Where, CTTj is the task completion time and STTj is the start
time of task. The variables that are used in this paper are defined
in Table 1. The parameters under consideration during the
scheduling comprise vCPU cost and requirement of memory and
its cost. The cost is computed using Equations (4-7).

0bj,(8) = min(Total,,,) (4)
Total,,, = f(TotvCPU, TotMem,,,) (5)
TotvCPU,,, = (ReqvCPUxVCPU,,,) (6)
TotMem,,,, = (Req,,, x Mem,,,,) (7

The low-cost tasks earn more priority, which may cause missing of
the deadline by some other tasks. In the proposed method a task
classification is introduced in terms of deadline, to cope with that
deadline constraint.

Table 1: Variable used in Clustered Input Oriented Salp Swarm
Algorithm (CIOSSA) cost evaluation and optimization.

Variables Description
TT, Cluster of tasks
Dt Deadline of tasks t_in T,
Dr, Deadline of tasks t,in T
Total cost Total cost

Need of virtual Central Processing

vCPU

Unit
Mem__, Need memory
TotvCPU__ , TotMem__ Total vCPU and Memory cost
vCPU_ , Mem_ vCPU and Memory cost

Req,,,., ReqvCPU
KC TEQ waiting buffer size

Required vCPU and Memory

Points to front and rear ends of

TEQ, . and TEQ

rear Task Entry Queue (TEQ)
t Current iteration
1b(] Lower bound

J Theor Comput Sci, Vol.10 Iss.3 No:1000225

OPEN aACCESS Freely available online

ubl(] Upper bound
X, Position of salp
E Position of food source
N Population/number of tasks

Best solution of each iteration

best

Maximum iterations/total number
req of requests

N

Proposed model

The proposed model span comprises three main stages such as
task entry, clustering and optimization. Initially the proposed
framework changes the existing FIFO task selection. Further,
during customer resource allocation the current resources
availability are checked dynamically. Again it fuses a multi-leader
SSA for the creation of an optimal schedule.

Task entry

The main entity in the task entry segment is the Task Entry
Queue (TEQ). When a user request a resource that is a new task
has entered the status of the TEQ is checked, if it is full the newly
entered task is dropped. Otherwise, it is added to the queue. The
pseudo-code representation of the task entry-stage is depicted in
algorithm 1.

Algorithm 1-Task entry:

Input : Enter job into TEQ with maximum buffer size in KC

Output : Allot job in the queue

TEQ is the array representation of Queue structure with
TEQfront and TEQrear points front and rear ends.

Algorithm Task Entry (Job)

{
TEQ(ronr=O’ TEQrcal‘z‘ 1 ;

While (TEQ, < KC-1)
TEQ ++;

rear

KC ++;

Enqueue (Job)

End while

TEQ is full and Drop Job.
}

Task Splitting Agglomerative Clustering (TSAC)

The proposed clustering system is named as Task Splitting
Agglomerative Clustering (TSAC) because the task categorization
is taking place in clustering. To the best of our knowledge, this
is one of the best categorization methods using the clustering
concept. Consider there are 10 different tasks T, T T is in
TEQ and they are entered in the order of T first, T, second and
so on. Their deadlines are 93, 78, 10, 67, 81, 89, 21, 34, 9, 26
milliseconds respectively. The tasks having deadline 93, 78, 67,
81, 89 say T, T,,T, T, T, are in low priority category and tasks
having deadline 10, 21, 34, 9, 26 thatis T,, T , T, T, T, are in high
priority category. Suppose the tasks in category one is selected
for scheduling T, T, T,/ T, T, are scheduled first. This changes
the default scheduling policy FIFO of the hierarchical modeling
approach.

Murali AJ, et al.

In the TSAC system initially, each task becomes a cluster.
Distance between clusters T, and T is the minimum distance
between any object in T, and T. The distance measure is based
on the deadline of tasks. The mathematical model for similarity
calculation is using Equation (8).

where t eT andt &T,

Merge clusters based on maximum similarity.

Algorithm 2-Task Splitting Agglomerative Clustering
(TSAC):

Input: Tasks to be scheduled.
Output: Two clusters, high range and low range
Initially each task makes a cluster search space.
Set CL as total number of clusters.
Evaluate Max sim(DtX,Dty)
While (CL < 2):
Merge the two closest clusters
Update Sim (T, Tj)
Decrement CL by 1
End while

Input Oriented Salp Swarm Algorithm (IOSSA)

Here in the proposed framework, a variation of SSA named
IOSSA is used for the optimization process. In the traditional
SSA, goal searching is performed based on a single leader that
may cause a reduction in performance. Two separate leaders
having two different objectives are introduced in the proposed
work. This multi-objective algorithm earns a full extension of
search space. It helps to find the optimal schedule. This in turn,
improves resource utilization, cost, makespan, etc.

The first step of the SSA algorithm is to set the initial population
since the original population is very large. Generally, the initial
population is taken as a random selection procedure. In the
proposed work the tasks are categorized based on priority. Based
on this prioritized schedule the proposed TSAC algorithm
identifies the customer requirements rather than random
selection. The resource availability is checked against the resource
pool. The resources are allocated when the resource pool has
sufficient resources. If not, tasks are distributed over the available

VMs.

One of the main overhead that has to be handled in this
proposed method during the initial stage is the selection of the
task category. Based on the availability of resources, measures in
terms of vCPU, memory and cost, the high range or low range
tasks are selected for the scheduling. This results in the avoidance
of resource overloading. If the availability of resources is higher,
the high range tasks are advised for scheduling. If VMs are already
busy then low range tasks having a low deadline, have to be
completed very fast and are selected for scheduling. That means
the most important tasks are treated and will get more priority.

The scheduling process comprises two-step processes. The first step
is the allocation of VM and is known as resource allocation. The
next step is the assignment of the time slot to tasks in the selected
VM named task scheduling. One of the main considerations in
the SSA is the selection of the number of iteration, here in [IOSSA
it is based on the tasks count. As the tasks count increased the
count of possible schedules is also increased.

J Theor Comput Sci, Vol.10 Iss.3 No:1000225

OPEN aACCESS Freely available online

Algorithm 3-Input Oriented Salp Swarm Optimization
(IOSSA):

Input: Tasks to be scheduled

Output: Nearly optimal schedule

Initilaize the population based on number of task n.

Initialize maximum iterations based on total number of request.
Set upper bound (ub, and ub,) and lower bound (Ib, and Ib).
Initialize (C,, C, and C,) using random function.

Set the initial iteration t=1.

Generate the initial populations.

e Categorize the tasks using TSAC Algorithm.

e Availability of resource is checked and select task category.
e Select the task category based on TSAC.

¢ Identify individual items in population (m!/2).

While, (t<max (t))

Evaluate two fitness values for each schedule using fitness

function Obj, and Obj,.
Identify the best solution F for Obj, and Obj,.

Set k as 1 to handle each objects in initial population.

Update C..

k=1

for no item in the population remains to visit
If (k==1)

Update position of leader, and leader,.
else
Update position of follower of Obj, and Obj,
End for
Increment t by 1
Update lower and upper limits.
End while
Identify the best out of two.
Return best solution

The makespan and scheduled total cost is thus minimized by the
proposed IOSSA. The follower tends to change their location
according to a sole leaders salp in existing SSA that cause
performance reduction. Therefore the proposed IOSSA utilizes
two salp chains having separate leaders. Among them one salp
chain i.e., Obj, (S) takes care on makespan and the other salp
chain Obj, (S) reduces the total cost. From these two salp chains
the best solution is constructed by Equation 1. Though SSA is
employed to solve complex optimization issues in some cases
sub-optimal solution is obtained due to lack of global searching
ability. But due to two salp chains utilization, this issue is resolved.

Mathematical model for IOSSA

For the mathematical representation, each object in a population
that is the schedules is divided in two groups: leader and followers.
The leader changes their position based on the requirement of
Central processing Unit (CPU) and memory. The leader updates
the position using Equation (9).
Solll] = {Fk +C, ((ub[k]-1b[K]1C, +Ib[K]) for C;>0.5
F, -C ((ublk]-Ib[k]C, +1b[k]) forC,<0.5 ... ©9)

Where, Sol[1] represents the position of leader salp, F, is the food

Murali AJ, et al.

position, ublk] indicates the k dimension upper bound and Ib[k]
is kdimension lower bound; C,,C, and C; are coefficients and
are random numbers. The parameter C, handles exploration and
exploitation and is calculated using Equation (10).

C, = 2¢O (10)
Where, t is the current iteration as well as max(t) is the maximum
iteration count. C, also C, are a random number in the range
[0, 1].
At first the leader position is updated using equation 9 and
according to the position of leader, the followers are updated
using Equation (11).

Sol[k]= %(Sol[k] +Sol[K -1])

Where, t > 2 and Sol[k] indicates the position of kth follower. The
proposed IOSSA is illustrated in Algorithm 3.

RESULTS

The evaluation matrices considered in this paper include cost,
resource utilization, makespan with time and memory usage.
Makespan is calculated using Equation (12), and is related to the
task start time (i) and task completion time (j).

Makespan = 27:0 2 ,(Completion time — Start time) (12)

Resource exploitation is the handling of shareable resources like
memory and vCPU. It is determined by Equation (13).
Utilization = _Usedtime (13)
Availabletime -*==*
Superior resource utilization makes confident that resource idle
time is less. The cost value is computed in terms of vCPU and

memory needed as in Equation (14).

cost =vCPU,,,, +Mem,,, (14)

The CIOSSA cost evaluation findings are gathered and a graph
is made during the result exploratory phase. Then the proposed
system makespan is compared with existing algorithms Genetic
Algorithm (GA), PSO, Gray Wolf Optimization (GWO) and a
freshly announced container base GWO. Finally, in terms of
makespan, resource utilization, cost and memory, the CIOSSA is
compared with traditional SSA.

Experimental setup

The simulation result analysis is done on HP PC with intel CORE
i5 8" Gen x64 based processor having 1.60 GHz-1.80 GH:z
processing speed and 8 GB of RAM. The proposed framework
performance is assessed by CloudSim simulator. The CloudSim
4.0 toolkit is run on windows 10 platform NetBeans IDE 8.2 as
IDE and it is associated with jdk 1.8.0_111 jdk package.

In our proposed model the capabilities of VMs such as available
memory, the processing speed of VCPU are variant. To evaluate
Clustered IOSSA (CIOSSA) several tasks are managed with
various sets of tasks and VMs. Here the tasks and VMs are
heterogeneous.

DISCUSSION

Evaluation of results

The cost function of CIOSSA is measured against varying a
number of tasks. The cost value is calculated on the dynamic
resources availability and the individual cost of resources. It is
fluctuating in nature and is tabulated in Table 2. The simulation

J Theor Comput Sci, Vol.10 Iss.3 No:1000225

OPEN aACCESS Freely available online

environment has 30 Physical Machines, 86 VMs distributer over
this PMs and a totally of 166 vCPUs (Table 2).

Table 2: Cost evalution of Clustered Input Oriented Salp Swarm
Algorithm (CIOSSA) measured across different task quantities.

Number of tasks cost ($) Number of tasks cost ($)
50 325 200 461
80 495 300 316
100 533 400 206

As per the cost analysis, if the number of tasks is less than
100, more resources are present and the idle time of resources
increases, thereby boosting the cost value. As the number of
jobs grows and we need to fit them into existing resources, there
appears to be a higher requirement for task distribution across
different VMs. As the number of tasks increases, the cost value
will decrease.

The simulation environment has 30 Physical Machines, 86 VMs
distributer over this PMs and a totally of 166 vCPUs. One of the
widely used software development systems introduced recently
is a micro-service system. It comes up with a two-layer resource
structure having container or Operating System (OS-level) and
VM level. Dimple et al.,, introduces a Grey Wolf Optimizer
(GWO) in the containerized cloud [21]. The proposed system
results are compared with this newly arrived elastic scheduling
micro-service system and it is shown in Figure 3. The results are
taken by the assumption that there are 50 containers or 50 active
VMs. The proposed system and the two-layer system give almost
similar results for makespan (Figure 3).

Makespan

IMakespan (ms)
=

N o @
.\@ S
<
-

Mumber of Resourcesand Tasks

Figure 3: Makespan comparison. Note: R: Number of resources;
T: Number of tasks; GWO: Gray Wolf Optimization; CIOSSA:
Clustered Input Oriented Salp Swarm Algorithm.

The comparison of traditional algorithms and proposed CIOSSA
in terms of different performance metrics. The X-axis represented
the tasks count along with availability of resources while the y-axis
parameter is varied as makespan, resource utilization, cost and
memory usage. Figure 4, depicts the performance evaluation of
the GA, PSO, GWO, SSA and proposed algorithm CIOSSA in
terms of makespan for 85 VMs distributed among 30 PMs [9-11]. If
there are 13 tasks and 3 resources available, the GA, PSO, GWO,
SSA and CIOSSA makespan values are 24.05, 22.11, 20.12, 19.35
and 18.12. When the tasks count is 30 and the resources count
is 30, the makespan values are 785.42, 774.46, 761.54, 755.43
and 744.48. Hence it is observed that the makespan of CIOSSA

is lower as compared to other existing algorithms. Thus the

Murali AJ, et al.

resource utilization is increased automatically as the reduction in
makespan is observed. The proposed framework produces a 3%
improvement in makespan as compared to SSA. It is also noticed,
as the number of available resources increased, the makespan got
reduced (Figures 4 and 5).

1000

100 -

1 = L a2
5 5 5 N N
:’i’\ ﬁ.‘\ :ﬂ.‘\ f&‘q) .&.:5
E-' . .\Q . \g.) . ﬁ:.) . Q -
¥ oo o ¥ ¥

Makespan (Sec)
ok
=

Number of Tasks and Resources

Figure 4: Makespan comparison of different algorithms. Note: GA:
Genetic Algorithm; PSO: Particle Swarm Optimization; GWO: Gray
Wolf Optimization.

100

Utilization (%)

R-3:T-15R-10:T-15R-15:T-15R-25:T-30R-30:T-30
Number of Tasks and Resources

Figure 5: Comparison of resource utilization. Note: GA: Genetic
Algorithm; PSO: Particle Swarm Optimization; GWO: Gray Wolf
Optimization; SSA: Salp Swarm Algorithm; CIOSSA: Clustered
Input Oriented Salp Swarm Algorithm.

It is thus observed around a 3% improvement in resource
utilization in proposed framework is observed. The cost and

memory usage of GA, PSO, GWO, SSA and CIOSSA could see
in Figures 6 and 7.

250

200

—
& 150

%z
& 100 -

50 -

0,

% & “ > D Q
S Qﬁ'\ <,,§'\ Qﬁ?’ %5:5 Qs?’
N v %)

o
ff\
¥ @ ¢ ¢ o«

Number of Resources and Tasks

Figure 6: Comparison of cost. Note: R: Number of resources; T:
Number of tasks; GA: Genetic Algorithm; PSO: Particle Swarm
Optimization; GWO: Gray Wolf Optimization; SSA: Salp Swarm
Algorithm; CIOSSA: Clustered Input Oriented Salp Swarm
Algorithm.

] Theor Comput Sci, Vol.10 Iss.3 No:1000225

OPEN aACCESS Freely available online

250000
200000
= r——]
E 150000 B e -
E‘ L 4 k- 4 k- 4 L
£ 100000
30000
il
= 2
; h ; o b b
A N .
¥ o o ¥ v W
Numberof Resources and Tashs

Figure 7: Comparison of memory usage. Note: R: Number of
resources; T: Number of tasks; GA: Genetic Algorithm; PSO: Particle
Swarm Optimization; GWO: Gray Wolf Optimization; SSA: Salp
Swarm Algorithm; CIOSSA: Clustered Input Oriented Salp Swarm
Algorithm.

The cost value is based on the dynamic availability of resources

as well as their individual costs. 564,624,653,574 and 551 are
the total costs observed for various algorithms and is shown in
Figure 6. According to the results of the experiment, GA, SSA
and CIOSSA all had improved cost results, with CIOSSA being
the best (Table 3 and Figure 6).

Table 3: Comparison for cost and memory.

Resources Cost ($) Memory (MB)
and tasks SSA CIOSSA SSA CIOSSA
R-5:T-15 12.6 9.38 100555 96445
R-10:T-15 30.3 12.4 112545 100542
R-15:T-15 423 217 135486 114493
R-20:T-30 134 87.3 165688 145485
R-25:T-30 178 137 175469 156954
R-30:T-30 206 158 196354 168405

Note: SSA: Salp Swarm Algorithm; CIOSSA: Clustered Input Oriented
Salp Swarm Algorithm; R: Number of resources; T: Number of tasks.

Here, R refers to the resources count and T refers to the task
count. The cost and memory are also noticed for increasing tasks
and resources for the proposed algorithm and with existing SSA
algorithm. The memory is measured in MegaBytes (MB). This
proves that the proposed algorithm offers better resources with
low memory utilization. This thus states the efficiency of the
proposed algorithm (Figure 7).

The average memory utilization of compared methods is
147335.67, 147492.67, 149286.17, 144399.50 and 135387.33
respectively. This indicates that the proposed technique provides
more resources while using less memory. As a result, the proposed
algorithm's efficiency is stated.

The purpose of the proposed method is to minimize cost and
makespan. It's also linked to a constant p, whose value ranges
from O to 1. When it gets close to 0, makespan gets more weight
and when it gets close to 1, the cost value gets more weight. When
the value is somewhere in the middle of O and 1, both makespan
and cost are equally important.

Murali AJ, et al.

CONCLUSION

In this paper, a resource allocation algorithm named clustered
input oriented salp swarm algorithm modeled in a hierarchical
modeling approach. In the proposed model, a clustering
mechanism has applied to change the FIFO structure execution
of tasks. The analysis of the proposed model is done rooted on the
performance metrices like cost evaluation, memory, makespan
and resource utilization. The analysis given concluded that the
proposed CIOSSA framework has improvements in resource
utilization cost and memory usage. The proposed framework
produces a 5% improvement in makespan and around a 10%
improvement in resource utilization as compared to existing
SSA. Future research projects will focus on crucial elements like
load balance and flow time when scheduling tasks and jobs.
Additionally, while the findings were only tested on CloudSim,
they were later confirmed in real-world settings.

REFERENCES

1. Chang X, Xia R, Muppala JK, Trivedi KS, Liu]. Effective
modelling approach for Infrastructure as a Service(laaS) data
center performance analysis under heterogeneous workload.

IEEE Trans Cloud Comput. 2016;6(4):991-1003.

2. Khazaei H, Misic], Misic VB, Rashwand S. Analysis of a
pool management scheme for cloud computing centers.

IEEE Trans Parallel Distrib Syst. 2012;24(5):849-861.
3. Khazaei H, Miic J, Miic VB, Mohammadi NB. Modelling

the performance of heterogeneous Infrastructure as a Service

(IaaS) cloud centers. ICDCSW. 2013:232-237.
4. Wang B, Chang XL, Liu JQ. Modelling the performance

of heterogeneous Infrastructure as a Service (laaS) cloud

centers. [EEE Commun. Lett. 2015;19(4):537-540.
5. Ghosh R, Longo F, Naik VK, Trivedi KS. Modelling and

performance analysis of large scale Infrastructure as a Service

(IaaS) clouds. FGCS. 2013;29(5):1216-1234.

6. Guo P, Bu LL. The hierarchical resource management model

based on cloud computing. EEESYM 2012:471-474.

7. Bruneo D. A stochastic model to investigate data center
performance and Quality of service (QoS) in Infrastructure
as a Service (IaaS) cloud computing systems. IEEE Trans.

Parallel Distrib. Syst. 2013;25(3):560-569.

8. Natesan G, Chokkalingam A. Optimal task scheduling in the
cloud environment using a mean Grey Wolf Optimization

(GWO) algorithm. IJTech. 2019;10(1):126-136.

9. Natesan G, Chokkalingam A. Task scheduling in
heterogeneous cloud environment using mean grey wolf
optimization algorithm. ICT Express. 2019;5(2):110-114.

10. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H,
Mirjalili SM. Salp Swarm Algorithm (SSA): A bio-inspired
optimizer for engineering design problems. Adv. Eng. Softw.

2017;114:163-191.

11. Huang CL, Yeh WC. A new Simplifier Swarm Optimization
(SSO)-based algorithm for the bi-objective time-constrained

J Theor Comput Sci, Vol.10 Iss.3 No:1000225

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

OPEN aACCESS Freely available online

task scheduling problem in cloud computing services. arXiv
preprint. 2019

Huang CL, Jiang YZ, Yin Y, Yeh WC, Chung VY, Lai CM.
Multi objective scheduling in cloud computing using Multi-
Objective Simplified Swarm Optimization (MOSSO). IEEE
CEC. 2018:1-8.

Ibrahim RA, Ewees AA, Oliva D, Abd Elaziz M, Lu S.
Improved salp swarm algorithm based on particle swarm
optimization for feature selection.] Ambient Intell Human

Comput. 2019;10:3155-3169.

Hegazy AE, Makhlouf MA, ElTawel GS. Improved
salp swarm algorithm for feature selection. JKSUCIL
2020;32(3):335-344.

Abusnaina AA, Ahmad S, Jarrar R, Mafarja M. Training
neural networks using salp swarm algorithm for pattern

classification. ICFNDS. 2018:1-6.

Kumar A, Bawa S. Generalized ant colony optimizer: Swarm-
based meta-heuristic algorithm for cloud services execution.

Computing. 2019;101(11):1609-1632.

Malekloo MH, Kara N, El Barachi M. An energy efficient
and Service Level Agreement (SLA) compliant approach for
resource allocation and consolidation in cloud computing

environments. SUSCOM. 2018;17:9-24.

Abdel-Basset M, Abdle-Fatah L, Sangaiah AK. An improved
levy based whale optimization algorithm for bandwidth-
efficient virtual machine placement in cloud computing

environment. Clust. Comput. 2019;22(4):8319-8334.

Pandey AC, Tripathi AK, Pal R, Mittal H, Saraswat M. Spiral
salp swarm optimization algorithm. [ISCON. 2019:722-727.

Saleh H, Nashaat H, Saber W, Harb HM. Improved Particle
Swarm Optimization (IPSO) task scheduling algorithm for
large scale data in cloud computing environment. IEEE

Access. 2018;7:5412-5420.
Patel D, Patra MK, Sahoo B. Grey Wolf Optimizer (GWO)

based task allocation for load balancing in containerized

cloud. ICICT. 2020:655-659.

Rana N, Abd Latiff MS. A cloud-based conceptual framework
for multi-objective virtual machine scheduling using whale
optimization algorithm. IJIC. 2018;8(3).

Haghighi MA, Maeen M, Haghparast M. An energy-
efficient dynamic resource management approach based on
clustering and meta-heuristic algorithms in cloud computing
Infrastructure as a Service ([aaS) platforms. Wirel. Pers.

Commun. 2019;104:1367-1391.
Gawali MB, Shinde SK. Task scheduling and resource

allocation in cloud computing using a heuristic approach.]

Cloud Comp. 2018;7:1-6.
Gawali MB, Shinde SK. Standard deviation based modified

cuckoo optimization algorithm for task scheduling to
efficient resource allocation in cloud computing. J. Adv Inf

Technol. 2017;8(4).

https://arxiv.org/abs/1905.04855
https://ieeexplore.ieee.org/abstract/document/8477709
https://ieeexplore.ieee.org/abstract/document/8477709
https://www.sciencedirect.com/science/article/pii/S1319157818303288
https://www.sciencedirect.com/science/article/pii/S1319157818303288
https://dl.acm.org/doi/abs/10.1145/3231053.3231070
https://dl.acm.org/doi/abs/10.1145/3231053.3231070
https://dl.acm.org/doi/abs/10.1145/3231053.3231070
https://link.springer.com/article/10.1007/s00607-018-0674-x
https://link.springer.com/article/10.1007/s00607-018-0674-x
https://www.sciencedirect.com/science/article/abs/pii/S2210537917302019
https://www.sciencedirect.com/science/article/abs/pii/S2210537917302019
https://www.sciencedirect.com/science/article/abs/pii/S2210537917302019
https://www.sciencedirect.com/science/article/abs/pii/S2210537917302019
https://link.springer.com/article/10.1007/s10586-018-1769-z
https://link.springer.com/article/10.1007/s10586-018-1769-z
https://link.springer.com/article/10.1007/s10586-018-1769-z
https://link.springer.com/article/10.1007/s10586-018-1769-z
https://ieeexplore.ieee.org/abstract/document/9036293
https://ieeexplore.ieee.org/abstract/document/9036293
https://ieeexplore.ieee.org/abstract/document/8594653
https://ieeexplore.ieee.org/abstract/document/8594653
https://ieeexplore.ieee.org/abstract/document/8594653
https://ieeexplore.ieee.org/abstract/document/9112525
https://ieeexplore.ieee.org/abstract/document/9112525
https://ieeexplore.ieee.org/abstract/document/9112525
https://ijic.utm.my/index.php/ijic/article/view/199
https://ijic.utm.my/index.php/ijic/article/view/199
https://ijic.utm.my/index.php/ijic/article/view/199
https://link.springer.com/article/10.1007/s11277-018-6089-3
https://link.springer.com/article/10.1007/s11277-018-6089-3
https://link.springer.com/article/10.1007/s11277-018-6089-3
https://link.springer.com/article/10.1007/s11277-018-6089-3
https://link.springer.com/article/10.1007/s11277-018-6089-3
https://link.springer.com/article/10.1186/s13677-018-0105-8
https://link.springer.com/article/10.1186/s13677-018-0105-8
https://d1wqtxts1xzle7.cloudfront.net/95269816/20171128030927399-libre.pdf?1670214977=&response-content-disposition=inline%3B+filename%3DStandard_Deviation_Based_Modified_Cuckoo.pdf&Expires=1724160282&Signature=COdn-OJm~6iszWWZMXprpu38Y2woRn01udbZHLcu~z5HTS6NhsLyeQx8aryo9zVQHGMnPrQSxsoNEGlk6ypCoOwEr9TDT9-LGZXOEG8Dvd60AhIvICBgZthezDjpvrnWd~BdczF4jYhxJSM7G2d3aytLxjYqlSBY~B6oU8qTHhz9~yWyF7lfMBxzDUBfvqGQEN8ey0EHYok4dBeT8k6lMP4fxwC6sqHPW~mZRxGoeg-3D3znvhtS9Z5HzDkcUtgiwjxQF38wr~XsETNs3srCXy~POGJgXZ83JRxjpTYaOoY-meTdfTI5p3Fx6V48ANKZwcgE96AUVW5Q2JFi4gtOHg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/95269816/20171128030927399-libre.pdf?1670214977=&response-content-disposition=inline%3B+filename%3DStandard_Deviation_Based_Modified_Cuckoo.pdf&Expires=1724160282&Signature=COdn-OJm~6iszWWZMXprpu38Y2woRn01udbZHLcu~z5HTS6NhsLyeQx8aryo9zVQHGMnPrQSxsoNEGlk6ypCoOwEr9TDT9-LGZXOEG8Dvd60AhIvICBgZthezDjpvrnWd~BdczF4jYhxJSM7G2d3aytLxjYqlSBY~B6oU8qTHhz9~yWyF7lfMBxzDUBfvqGQEN8ey0EHYok4dBeT8k6lMP4fxwC6sqHPW~mZRxGoeg-3D3znvhtS9Z5HzDkcUtgiwjxQF38wr~XsETNs3srCXy~POGJgXZ83JRxjpTYaOoY-meTdfTI5p3Fx6V48ANKZwcgE96AUVW5Q2JFi4gtOHg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/95269816/20171128030927399-libre.pdf?1670214977=&response-content-disposition=inline%3B+filename%3DStandard_Deviation_Based_Modified_Cuckoo.pdf&Expires=1724160282&Signature=COdn-OJm~6iszWWZMXprpu38Y2woRn01udbZHLcu~z5HTS6NhsLyeQx8aryo9zVQHGMnPrQSxsoNEGlk6ypCoOwEr9TDT9-LGZXOEG8Dvd60AhIvICBgZthezDjpvrnWd~BdczF4jYhxJSM7G2d3aytLxjYqlSBY~B6oU8qTHhz9~yWyF7lfMBxzDUBfvqGQEN8ey0EHYok4dBeT8k6lMP4fxwC6sqHPW~mZRxGoeg-3D3znvhtS9Z5HzDkcUtgiwjxQF38wr~XsETNs3srCXy~POGJgXZ83JRxjpTYaOoY-meTdfTI5p3Fx6V48ANKZwcgE96AUVW5Q2JFi4gtOHg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://ieeexplore.ieee.org/abstract/document/7462235
https://ieeexplore.ieee.org/abstract/document/7462235
https://ieeexplore.ieee.org/abstract/document/7462235
https://ieeexplore.ieee.org/abstract/document/6226375
https://ieeexplore.ieee.org/abstract/document/6226375
https://ieeexplore.ieee.org/abstract/document/6679893
https://ieeexplore.ieee.org/abstract/document/6679893
https://ieeexplore.ieee.org/abstract/document/6679893
https://ieeexplore.ieee.org/document/7042273
https://ieeexplore.ieee.org/document/7042273
https://ieeexplore.ieee.org/document/7042273
https://www.sciencedirect.com/science/article/abs/pii/S0167739X12001410
https://www.sciencedirect.com/science/article/abs/pii/S0167739X12001410
https://www.sciencedirect.com/science/article/abs/pii/S0167739X12001410
https://ieeexplore.ieee.org/abstract/document/6258695
https://ieeexplore.ieee.org/abstract/document/6258695
https://ieeexplore.ieee.org/document/6473795
https://ieeexplore.ieee.org/document/6473795
https://ieeexplore.ieee.org/document/6473795
https://ijtech.eng.ui.ac.id/article/view/1972
https://ijtech.eng.ui.ac.id/article/view/1972
https://ijtech.eng.ui.ac.id/article/view/1972
https://www.sciencedirect.com/science/article/pii/S2405959518302534
https://www.sciencedirect.com/science/article/pii/S2405959518302534
https://www.sciencedirect.com/science/article/pii/S2405959518302534
https://www.sciencedirect.com/science/article/abs/pii/S0965997816307736
https://www.sciencedirect.com/science/article/abs/pii/S0965997816307736
https://arxiv.org/abs/1905.04855
https://arxiv.org/abs/1905.04855

