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One of the main disputes to handle carefully in cloud computing 
is task scheduling and will affect the performance of resource 
allocation in clusters of the cloud environment. The chief goal is 
to decrease the makespan of schedule that will cause the efficient 
utilization of resources. The second objective is to reduce costs. 
Scheduling is an optimization problem and is a Nondeterministic 
Polynomial (NP) time hard problem. Nearly optimal solutions 
are obtained for optimization problems by the introduction of 
heuristic algorithms. 

Simplifier Swarm Optimization (SSO), Particle Swarm 
Optimization (PSO) and Mean Grey Wolf Optimization 
(MGWO) algorithm, Salp Swarm Algorithm (SSA), etc. are 
swarm intelligence algorithms. These meta-heuristic swarm-based 
algorithms will give a near-optimal schedule that will attain the 
above-mentioned objectives [6-15].

Some existing methodologies proposed for resource allocation 
are Kumar et al., presented a swarm-grounded meta-heuristic 
method called Generalized Ant Colony Optimizer (GACO) [16]. 

INTRODUCTION

Cloud computing makes possible the on-demand accessing 
of cloud computing resources like disk space, virtual Central 
Processing Units (vCPU), Random Access Memory (RAM), etc. 
over the internet. These resources are in the outline of a virtual 
machine and are deployed in physical machines. Three trendy 
service models in cloud computing are Platform as a Service 
(PaaS), Software as a Service (SaaS) and Infrastructure as a Service 
(IaaS). The IaaS service quality and cost of cloud computing are 
standing on the resource allocation process and the resource 
provider [1]. 

The allocation of resources to customers should be optimal. 
Different resource management strategies like the centralized 
model, hierarchical model can be used for the efficient allocation 
of resources [2]. Clustering is the method of dividing data points 
into different groups. Clustering is classified as hierarchical 
clustering and partial clustering. Hierarchical is subdivided into 
agglomerative and divisive [3-5].
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Gawali et al., discussed about task scheduling and resource 
allocation [24]. A heuristic method was proposed to carry out 
task scheduling and resource allotment. Gawali et al., gave a 
Standard Deviation rooted Modified Cuckoo Optimization 
Algorithm (SDMCOA) for scheduling the tasks with two phases 
[25]. In the primary phase, the sample preliminary populations 
were estimated among the accessible count of task’s population.

The proposed task scheduling algorithm is titled as CIOSSA. The 
basic framework followed is hierarchical modeling. The following 
are the key goals of CIOSSA:

• The proper utilization of resources that scales down the 
wastage of computing power by checking the resource 
availability at the time of scheduling.

• A preprocessing clustering mechanism has been introduced 
to give priority to tasks based on the current resources.

• The scheduling is based on resource requirements and the 
priority of tasks, so the First in First out (FIFO) ordering 
scheme is changed.

• An improved version of SSA is recommended in this paper, 
which makes use of two separate leaders. 

MATERIALS AND METHODS

The proposed method follows a hierarchical modeling approach 
with some modifications. It also uses the hierarchical clustering 
method for task categorization and a modified SSA for scheduling.

Hierarchical modeling approach 

In the hierarchical modeling approach, the resource allocation 
and management are maintained master-slave structure. The 
master manages users to request and resources. The VMs are 
managed at a cluster level. The VMs are deployed in Physical 
Machines (PM). The virtual resources allocation is done at the 
VM level [4]. The basic diagrammatic representation is shown in 
Figure 1. 

This fusion method comprised of easy ant colony optimization 
and global colony optimization idea. 

Malekloo et al., proposed Multi-objective ACO (MACO) method 
for Virtual Machine (VM) assignment with consolidation [17]. 
This method attains a trade-off among system performance, energy 
efficiency, along with Service Level Agreement (SLA)-compliance. 
Abdel-Basset et al., centers on VM assignment issue regarding 
to the obtainable bandwidth that is equated as changeable sized 
bin stuffing issue [18]. Furthermore, a bandwidth allotment plan 
is introduced and fused with an enhanced alternative of Whale 
Optimization Algorithm (WOA).

The task scheduling algorithm grounded on bacterial foraging 
optimization to lessen the inoperative time of VMs while the 
load balancing along with runtime minimization have arised 
[19]. Saleh et al., gave the Improved Particle Swarm Optimization 
(IPSO) algorithm to offer the most favorable allotment for a great 
task count [20]. This is attained by dividing the suggested tasks 
into batches in a vibrant way. The resources utilization situation 
is measured in all construction of batches. 

Patel et al., focused on reducing on the whole makespan with 
useful load balancing via forming the swarm intellect of social 
spider by messy inertia weight grounded arbitrary assortment 
[21]. The projected algorithm stops the local convergence plus 
investigates the worldwide intelligent penetrating in deciding the 
finest optimized VM for the user mission.

Rana et al., proved a meta-heuristic approach to attain optimal 
results. In a heterogeneous atmosphere, where millions of 
resources can be owed and deallocate in a part of time, current 
metaheuristic algorithms execute fine owing to its vast power 
[22]. Here a theoretical structure for solve multi-objective VM 
scheduling issue was presented by meta-heuristic WOA. Haghighi 
et al., by virtualization method provided a fusion method for 
resource administration [23]. This method exploited k-means 
clustering for mapping job as well as active consolidation process, 
enhanced through micro-genetic algorithm.

Figure 1: Hierarchical model for resource allocation and management in cloud computing. Note: VM: Virtual Machine.
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It minimizes makespan, which in turn reduces resource 
utilization and the cost of resources. In this model, independent 
and heterogeneous jobs are considered for scheduling. A 
heterogeneous workload means the jobs are requesting different 
amounts of resources, and more than one job is in the PM's 
waiting queue.

Basic architecture

Cloud computing makes possible the on-demand accessing of 
cloud computing resources like disk space, vCPU, RAM, etc. 
These resources correspond to virtual machines they are deployed 
in physical machines. The Cloud Service Providers (CSP) are 
availing the cloud computing services to customers as their 
request. The IaaS service quality and cost of cloud computing 
are based on the resource allocation process and the resource 
provider. The allocation of resources to customers should be 
optimal.

The main intention of the cloud scheduling problem is to 
satisfy user requirements by fruitfully allocating resources. 
The final solution schedule is optimal or near-optimal. 
The customer's request represented as heterogeneous tasks 

1 2 3{ , , ,... }nT T T T T=  . These tasks carried out by the allocation of 
VMs, say 1 2 3{ , , ,... }mVM VM VM VM VM=  The chief goal of the proposed 
framework is to create a resource allocation algorithm in the 
cloud environment. The proposed resource allocation algorithm 
named CIOSSA provides efficient utilization of resources and 
reduces the cost.

The architecture of the proposed method is verified in Figure 2. 
It is modeled as entry part, clustering phase and optimization 
phase. The task is entered into the task entry stage. The clustering 
stage considers the tasks in the entry queue and categorizes them 
into low range and high range tasks. The deadline is the margin 
for this categorization and is described in task entry (Figure 2).

Figure 2: Architecture of CIOSSA framework. Note: CIOSSA: 
Clustered Input Oriented Salp Swarm Algorithm; TSAC: Task 
Splitting Agglomerative Clustering; IOSSA: Input Oriented Salp 
Swarm Algorithm.

In the proposed framework the clustering scheme is the variation 
of hierarchical agglomerative clustering named Task Splitting 
Agglomerative Clustering (TSAC). Though several existing works 
are identified the greatest intention of this stage is to identify 
the task's urgency. In other words, this stage gives some way of 
priority to tasks based on the deadline. This will change the First 
Come First Serve Scheduling (FCFS) policy of task execution. 

Optimization is the next important stage in the framework. It is 
obtained by using the improved SSA called IOSSA. It is one of the 
swarm-based techniques that incorporate the objective function 
during task scheduling. At the time of resource allocation, the 

The PMs that are involved in cloud computing services are 
categorized as hot, warm and cold. Hot systems are those having 
active VMs able to run jobs at this moment, warm means VMs 
are running not able to run the job at this moment and cold 
means the VMs are turned off. The cold state requires more time 
to turn to active mode as compared to warm.

The existing hierarchical model has some shortcomings [1]. Here 
considering only one of the active PM states, the PMs may be in 
other states. The scheduling policy used here is FIFO during the 
time of scheduling jobs.

The availability of the required amount of resources is not 
checked during the allocation job. During the execution time, 
only the deficiency of resources is understood.

All tasks in the job are allocated to a single PM. The resource 
pool contains a set of PMs, each PMs contains some free VMs. 
Suppose a new job comes, sufficient VMs for executing that 
job are distributed in different PMs, not in a single PM so the 
allocation is not possible the job has to wait.

Hierarchical clustering

The hierarchical clustering separating data points into different 
groups based on the same measure of similarity. Initially, each 
data point is a cluster of its own. Then find out the least distance 
between two clusters and bring them together. This is represented 
in a tree-like structure called dendrogram we terminated when we 
are left with one cluster. The key steps in hierarchical clustering 
are:

• Measure the similarity distance between different data 
points.

• Grouping or combine the nearest clusters.

• Stop grouping until termination criteria reached.

In this method, the data points are distributed over Euclidean 
space and Euclidean distance measure is used to measure the 
distance between clusters.

Salp swarm algorithm

SSA is a nature stimulated algorithm and imitates the behavior of 
salp in oceans or seas. Their food source identification is a group 
activity and forms a salp chain. The chain contains a leader at the 
front and others are followers. The followers will change their 
position based on the inspiration from the leader. In general, the 
possible solutions mean population serves as the salp chain the 
position of the best solution in the population is denoted as the 
food source position (F) in the chain denotes the best solution 
for the problem. Each solution has n-dimensions, where n is the 
count of problem variables. Two-dimensional matrix is used to 
store the position of all salps, which is the x and y coordinates. 
This concept can be mapped into scheduling problems and 
Mirjalili et al., tested SSA on several mathematical optimization 
functions and observe that SSA is an effective approach for 
scheduling problems [10].

The main fault identified during the analysis of SSA concerning 
cloud scheduling problems is the slow convergence rate. The goal 
of searching ability is also minimized.

Problem description

The SSA is good enough for cloud scheduling problems [11]. A 
resource allocation algorithm named Clustered Input Oriented 
Salp Swarm Algorithm (CIOSSA) based on SSA is proposed. 

Murali AJ, et al. 
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ub[] Upper bound

Xj Position of salp

F
j

Position of food source

N Population/number of tasks

I
best

Best solution of each iteration

N
req

Maximum iterations/total number 
of requests

Proposed model 

The proposed model span comprises three main stages such as 
task entry, clustering and optimization. Initially the proposed 
framework changes the existing FIFO task selection. Further, 
during customer resource allocation the current resources 
availability are checked dynamically. Again it fuses a multi-leader 
SSA for the creation of an optimal schedule.

Task entry

The main entity in the task entry segment is the Task Entry 
Queue (TEQ). When a user request a resource that is a new task 
has entered the status of the TEQ is checked, if it is full the newly 
entered task is dropped. Otherwise, it is added to the queue. The 
pseudo-code representation of the task entry-stage is depicted in 
algorithm 1.

Algorithm 1-Task entry:

Input : Enter job into TEQ with maximum buffer size in KC

Output : Allot job in the queue

TEQ is the array representation of Queue structure with 
TEQfront and TEQrear points front and rear ends.

Algorithm Task Entry (Job)

{

TEQfront=0, TEQrear=-1;

While (TEQfront ≤ KC-1) 

TEQ
rear

 ++; 

KC ++;

Enqueue (Job)

End while

TEQ is full and Drop Job.

}

Task Splitting Agglomerative Clustering (TSAC)

The proposed clustering system is named as Task Splitting 
Agglomerative Clustering (TSAC) because the task categorization 
is taking place in clustering. To the best of our knowledge, this 
is one of the best categorization methods using the clustering 
concept. Consider there are 10 different tasks T

1
, T

2
-T

10
 is in 

TEQ and they are entered in the order of T
1
 first, T

2
 second and 

so on. Their deadlines are 93, 78, 10, 67, 81, 89, 21, 34, 9, 26 
milliseconds respectively. The tasks having deadline 93, 78, 67, 
81, 89 say T1,T2,T4,T5,T6 are in low priority category and tasks 
having deadline 10, 21, 34, 9, 26 that is T3

,T
7
,T

8
,T

9
,T

10
 are in high 

priority category. Suppose the tasks in category one is selected 
for scheduling T

1
,T

2
,T

4
,T

5
,T

6
 are scheduled first. This changes 

the default scheduling policy FIFO of the hierarchical modeling 
approach.

resource availability is checked across the user requirement 
efficiently than existing schemes.

TSAC explains the classification of tasks from the task entry 
phase by incorporating clustering. The categorized tasks from the 
clustering phase are taken as input by the optimization stage that 
is described detailed in IOSSA

Problem formulation

The chief principle of the proposed method is to create a task 
scheduling algorithm in the cloud environment. The main 
objectives during the implementation are makespan and cost. 
Optimal task scheduling will be the one that optimizes the make 
span of the schedule S. Makespan is termed as the quantity of 
time from start to finish for carrying out a set of jobs i.e. it is the 
utmost completion time of every jobs. The main objective of the 
proposed framework is formulated using Equations (1-3):

1 2( ) ( ) (1- ) ( )Obj S Obj S Obj Sµ µ= × + × ……. (1)

Where, 0<µ<1

1( ) min( ( ))Obj S Makespan S= ……. (2)
1,2,, 1,2,,( ) max ( ( )) - min ( ( ))i m i j i m i jMakespan S VM CTT VM STT= == ∑ ∑ ……. (3)

Where, CTTj is the task completion time and STTj is the start 
time of task. The variables that are used in this paper are defined 
in Table 1. The parameters under consideration during the 
scheduling comprise vCPU cost and requirement of memory and 
its cost. The cost is computed using Equations (4-7).

2 cos( ) min( )tObj S Total= …….  (4)

cos cost cost( )tTotal f TotvCPU TotMem= ……. (5)

cos cos(Re )t tTotvCPU qvCPU vCPU= × ……. (6)

cos cos(Re )t Mem tTotMem q Mem= × ……. (7)

The low-cost tasks earn more priority, which may cause missing of 
the deadline by some other tasks. In the proposed method a task 
classification is introduced in terms of deadline, to cope with that 
deadline constraint.

Table 1: Variable used in Clustered Input Oriented Salp Swarm 
Algorithm (CIOSSA) cost evaluation and optimization.

Variables Description

Ti
 T

j
Cluster of tasks

Dt
x

Deadline of tasks t
x
 in T

i

Dt
y

Deadline of tasks t
y
 in T

j

Total cost Total cost

vCPU
Need of virtual Central Processing 

Unit

Memneed
Need memory

TotvCPUcost
, TotMem

cost
Total vCPU and Memory cost

vCPU
cost, Memcost vCPU and Memory cost

ReqMem, ReqvCPU Required vCPU and Memory

KC TEQ waiting buffer size

TEQ
front

 and TEQ
rear

Points to front and rear ends of 
Task Entry Queue (TEQ)

t Current iteration

lb[] Lower bound
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Algorithm 3-Input Oriented Salp Swarm Optimization 
(IOSSA):

Input: Tasks to be scheduled

Output: Nearly optimal schedule

Initilaize the population based on number of task n.

Initialize maximum iterations based on total number of request.

Set upper bound (ub1 and ub2) and lower bound (lb1 and lb2).

Initialize (C
1
, C

2
 and C

3
) using random function.

Set the initial iteration t=1.

Generate the initial populations.

• Categorize the tasks using TSAC Algorithm.

• Availability of resource is checked and select task category.

• Select the task category based on TSAC.

• Identify individual items in population (m!/2).

While, (t<max (t)) 

Evaluate two fitness values for each schedule using fitness 
function Obj

1
 and Obj

2
.

Identify the best solution F
1
 for Obj

1
 and Obj

2
.

Set k as 1 to handle each objects in initial population.

Update C
1
.

k=1

for no item in the population remains to visit

 If (k==1)

Update position of leader
1 and leader2.

  else

Update position of follower of Obj1
 and Obj

2

End for

Increment t by 1

Update lower and upper limits. 

End while

Identify the best out of two.

Return best solution 

The makespan and scheduled total cost is thus minimized by the 
proposed IOSSA. The follower tends to change their location 
according to a sole leaders salp in existing SSA that cause 
performance reduction. Therefore the proposed IOSSA utilizes 
two salp chains having separate leaders. Among them one salp 
chain i.e., Obj

1
 (S) takes care on makespan and the other salp 

chain Obj2 (S) reduces the total cost. From these two salp chains 
the best solution is constructed by Equation 1. Though SSA is 
employed to solve complex optimization issues in some cases 
sub-optimal solution is obtained due to lack of global searching 
ability. But due to two salp chains utilization, this issue is resolved. 

Mathematical model for IOSSA

For the mathematical representation, each object in a population 
that is the schedules is divided in two groups: leader and followers. 
The leader changes their position based on the requirement of 
Central processing Unit (CPU) and memory. The leader updates 
the position using Equation (9).

1 2 3

1 2 3

(( [ ] - [ ] [ ]) 0.5
[1]

- (( [ ] - [ ] [ ]) 0.5
k

k

F C ub k lb k C lb k for C
Sol

F C ub k lb k C lb k for C
+ + ≥

=  + < ……. (9)

Where, Sol[1] represents the position of leader salp, F
k
 is the food 

In the TSAC system initially, each task becomes a cluster. 
Distance between clusters T

i
 and T

j
 is the minimum distance 

between any object in Ti and Tj. The distance measure is based 
on the deadline of tasks. The mathematical model for similarity 
calculation is using Equation (8). 

x i y jwhere t T and t Tε ε ……. (8)

Merge clusters based on maximum similarity.

Algorithm 2-Task Splitting Agglomerative Clustering 
(TSAC):

Input: Tasks to be scheduled.

Output: Two clusters, high range and low range

Initially each task makes a cluster search space.

Set CL as total number of clusters.

Evaluate Max sim(Dtx ,Dt
y
  ) 

While (CL ≤ 2):

 Merge the two closest clusters

 Update Sim (T
i
, T

j
)

 Decrement CL by 1

End while

Input Oriented Salp Swarm Algorithm (IOSSA)

Here in the proposed framework, a variation of SSA named 
IOSSA is used for the optimization process. In the traditional 
SSA, goal searching is performed based on a single leader that 
may cause a reduction in performance. Two separate leaders 
having two different objectives are introduced in the proposed 
work. This multi-objective algorithm earns a full extension of 
search space. It helps to find the optimal schedule. This in turn, 
improves resource utilization, cost, makespan, etc.

The first step of the SSA algorithm is to set the initial population 
since the original population is very large. Generally, the initial 
population is taken as a random selection procedure. In the 
proposed work the tasks are categorized based on priority. Based 
on this prioritized schedule the proposed TSAC algorithm 
identifies the customer requirements rather than random 
selection. The resource availability is checked against the resource 
pool. The resources are allocated when the resource pool has 
sufficient resources. If not, tasks are distributed over the available 
VMs.

One of the main overhead that has to be handled in this 
proposed method during the initial stage is the selection of the 
task category. Based on the availability of resources, measures in 
terms of vCPU, memory and cost, the high range or low range 
tasks are selected for the scheduling. This results in the avoidance 
of resource overloading. If the availability of resources is higher, 
the high range tasks are advised for scheduling. If VMs are already 
busy then low range tasks having a low deadline, have to be 
completed very fast and are selected for scheduling. That means 
the most important tasks are treated and will get more priority. 

The scheduling process comprises two-step processes. The first step 
is the allocation of VM and is known as resource allocation. The 
next step is the assignment of the time slot to tasks in the selected 
VM named task scheduling. One of the main considerations in 
the SSA is the selection of the number of iteration, here in IOSSA 
it is based on the tasks count. As the tasks count increased the 
count of possible schedules is also increased.

Murali AJ, et al. 
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position, ub[k] indicates the kth dimension upper bound and lb[k] 
is k

th
 dimension lower bound; C

1
,C

2
 and C

3
 are coefficients and 

are random numbers. The parameter C1 handles exploration and 
exploitation and is calculated using Equation (10). 

(4 /max( ))
1 2 t tC e−= ……. (10)

Where, t is the current iteration as well as max(t) is the maximum 
iteration count. C2 also C3 are a random number in the range 
[0, 1].

At first the leader position is updated using equation 9 and 
according to the position of leader, the followers are updated 
using Equation (11). 

1[ ] ( [ ] [ 1])
2

Sol k Sol k Sol K= + −
……. (11)

Where, t ≥ 2 and Sol[k] indicates the position of k
th
 follower. The 

proposed IOSSA is illustrated in Algorithm 3. 

RESULTS

The evaluation matrices considered in this paper include cost, 
resource utilization, makespan with time and memory usage. 
Makespan is calculated using Equation (12), and is related to the 
task start time (i) and task completion time (j). 

0 0 ( )m n
j iMakespan Completiontime Start time= == ∑ ∑ − ……. (12)

Resource exploitation is the handling of shareable resources like 
memory and vCPU. It is determined by Equation (13).

Used timeUtilization
Available time

= ……. (13)

Superior resource utilization makes confident that resource idle 
time is less. The cost value is computed in terms of vCPU and 
memory needed as in Equation (14).

Need Needcost vCPU Mem= + ……. (14)

The CIOSSA cost evaluation findings are gathered and a graph 
is made during the result exploratory phase. Then the proposed 
system makespan is compared with existing algorithms Genetic 
Algorithm (GA), PSO, Gray Wolf Optimization (GWO) and a 
freshly announced container base GWO. Finally, in terms of 
makespan, resource utilization, cost and memory, the CIOSSA is 
compared with traditional SSA.

Experimental setup

The simulation result analysis is done on HP PC with intel CORE 
i5 8th Gen x64 based processor having 1.60 GHz–1.80 GHz 
processing speed and 8 GB of RAM. The proposed framework 
performance is assessed by CloudSim simulator. The CloudSim 
4.0 toolkit is run on windows 10 platform NetBeans IDE 8.2 as 
IDE and it is associated with jdk 1.8.0_111 jdk package. 

In our proposed model the capabilities of VMs such as available 
memory, the processing speed of VCPU are variant. To evaluate 
Clustered IOSSA (CIOSSA) several tasks are managed with 
various sets of tasks and VMs. Here the tasks and VMs are 
heterogeneous.

DISCUSSION

Evaluation of results

The cost function of CIOSSA is measured against varying a 
number of tasks. The cost value is calculated on the dynamic 
resources availability and the individual cost of resources. It is 
fluctuating in nature and is tabulated in Table 2. The simulation 

environment has 30 Physical Machines, 86 VMs distributer over 
this PMs and a totally of 166 vCPUs (Table 2).

Table 2: Cost evalution of Clustered Input Oriented Salp Swarm 

Algorithm (CIOSSA) measured across different task quantities.

Number of tasks cost ($) Number of tasks cost ($)

50 325 200 461

80 495 300 316

100 533 400 206

As per the cost analysis, if the number of tasks is less than 
100, more resources are present and the idle time of resources 
increases, thereby boosting the cost value. As the number of 
jobs grows and we need to fit them into existing resources, there 
appears to be a higher requirement for task distribution across 
different VMs. As the number of tasks increases, the cost value 
will decrease.

The simulation environment has 30 Physical Machines, 86 VMs 
distributer over this PMs and a totally of 166 vCPUs. One of the 
widely used software development systems introduced recently 
is a micro-service system. It comes up with a two-layer resource 
structure having container or Operating System (OS-level) and 
VM level. Dimple et al., introduces a Grey Wolf Optimizer 
(GWO) in the containerized cloud [21]. The proposed system 
results are compared with this newly arrived elastic scheduling 
micro-service system and it is shown in Figure 3. The results are 
taken by the assumption that there are 50 containers or 50 active 
VMs. The proposed system and the two-layer system give almost 
similar results for makespan (Figure 3).

Figure 3: Makespan comparison. Note: R: Number of resources; 
T: Number of tasks; GWO: Gray Wolf Optimization; CIOSSA: 
Clustered Input Oriented Salp Swarm Algorithm. 

The comparison of traditional algorithms and proposed CIOSSA 
in terms of different performance metrics. The X-axis represented 
the tasks count along with availability of resources while the y-axis 
parameter is varied as makespan, resource utilization, cost and 
memory usage. Figure 4, depicts the performance evaluation of 
the GA, PSO, GWO, SSA and proposed algorithm CIOSSA in 
terms of makespan for 85 VMs distributed among 30 PMs [9-11]. If 
there are 13 tasks and 3 resources available, the GA, PSO, GWO, 
SSA and CIOSSA makespan values are 24.05, 22.11, 20.12, 19.35 
and 18.12. When the tasks count is 30 and the resources count 
is 30, the makespan values are 785.42, 774.46, 761.54, 755.43 
and 744.48. Hence it is observed that the makespan of CIOSSA 
is lower as compared to other existing algorithms. Thus the 

Murali AJ, et al. 
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Figure 7: Comparison of memory usage. Note: R: Number of 
resources; T: Number of tasks; GA: Genetic Algorithm; PSO: Particle 
Swarm Optimization; GWO: Gray Wolf Optimization; SSA: Salp 
Swarm Algorithm; CIOSSA: Clustered Input Oriented Salp Swarm 
Algorithm.

 

The cost value is based on the dynamic availability of resources 

as well as their individual costs. 564,624,653,574 and 551 are 
the total costs observed for various algorithms and is shown in 
Figure 6. According to the results of the experiment, GA, SSA 
and CIOSSA all had improved cost results, with CIOSSA being 
the best (Table 3 and Figure 6).

Table 3: Comparison for cost and memory.

Resources 
and tasks

Cost ($) Memory (MB)

SSA CIOSSA SSA CIOSSA

R-5:T-15 12.6 9.38 100555 96445

R-10:T-15 30.3 12.4 112545 100542

R-15:T-15 42.3 21.7 135486 114493

R-20:T-30 134 87.3 165688 145485

R-25:T-30 178 137 175469 156954

R-30:T-30 206 158 196354 168405

Note: SSA: Salp Swarm Algorithm; CIOSSA: Clustered Input Oriented 
Salp Swarm Algorithm; R: Number of resources; T: Number of tasks.

Here, R refers to the resources count and T refers to the task 
count. The cost and memory are also noticed for increasing tasks 
and resources for the proposed algorithm and with existing SSA 
algorithm. The memory is measured in MegaBytes (MB). This 
proves that the proposed algorithm offers better resources with 
low memory utilization. This thus states the efficiency of the 
proposed algorithm (Figure 7).

The average memory utilization of compared methods is 
147335.67, 147492.67, 149286.17, 144399.50 and 135387.33 
respectively. This indicates that the proposed technique provides 
more resources while using less memory. As a result, the proposed 
algorithm's efficiency is stated.

The purpose of the proposed method is to minimize cost and 
makespan. It's also linked to a constant µ, whose value ranges 
from 0 to 1. When it gets close to 0, makespan gets more weight 
and when it gets close to 1, the cost value gets more weight. When 
the value is somewhere in the middle of 0 and 1, both makespan 
and cost are equally important.

resource utilization is increased automatically as the reduction in 
makespan is observed. The proposed framework produces a 3% 
improvement in makespan as compared to SSA. It is also noticed, 
as the number of available resources increased, the makespan got 
reduced (Figures 4 and 5).

Figure 4: Makespan comparison of different algorithms. Note: GA: 
Genetic Algorithm; PSO: Particle Swarm Optimization; GWO: Gray 
Wolf Optimization.

Figure 5: Comparison of resource utilization. Note: GA: Genetic 
Algorithm; PSO: Particle Swarm Optimization; GWO: Gray Wolf 
Optimization; SSA: Salp Swarm Algorithm; CIOSSA: Clustered 
Input Oriented Salp Swarm Algorithm.

It is thus observed around a 3% improvement in resource 
utilization in proposed framework is observed. The cost and 
memory usage of GA, PSO, GWO, SSA and CIOSSA could see 
in Figures 6 and 7.

Figure 6: Comparison of cost. Note: R: Number of resources; T: 
Number of tasks; GA: Genetic Algorithm; PSO: Particle Swarm 
Optimization; GWO: Gray Wolf Optimization; SSA: Salp Swarm 
Algorithm; CIOSSA: Clustered Input Oriented Salp Swarm 
Algorithm.
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and Service Level Agreement (SLA) compliant approach for 
resource allocation and consolidation in cloud computing 
environments. SUSCOM. 2018;17:9-24.  

18. Abdel-Basset M, Abdle-Fatah L, Sangaiah AK. An improved 
levy based whale optimization algorithm for bandwidth-
efficient virtual machine placement in cloud computing 
environment. Clust. Comput. 2019;22(4):8319-8334.  

19. Pandey AC, Tripathi AK, Pal R, Mittal H, Saraswat M. Spiral 
salp swarm optimization algorithm. ISCON. 2019:722-727.  

20. Saleh H, Nashaat H, Saber W, Harb HM. Improved Particle 
Swarm Optimization (IPSO) task scheduling algorithm for 
large scale data in cloud computing environment. IEEE 
Access. 2018;7:5412-5420.  

21. Patel D, Patra MK, Sahoo B. Grey Wolf Optimizer (GWO) 
based task allocation for load balancing in containerized 
cloud. ICICT. 2020:655-659.  

22. Rana N, Abd Latiff MS. A cloud-based conceptual framework 
for multi-objective virtual machine scheduling using whale 
optimization algorithm. IJIC. 2018;8(3).  

23. Haghighi MA, Maeen M, Haghparast M. An energy-
efficient dynamic resource management approach based on 
clustering and meta-heuristic algorithms in cloud computing 
Infrastructure as a Service (IaaS) platforms. Wirel. Pers. 
Commun. 2019;104:1367-1391. 

24. Gawali MB, Shinde SK. Task scheduling and resource 
allocation in cloud computing using a heuristic approach. J 
Cloud Comp. 2018;7:1-6.  

25. Gawali MB, Shinde SK. Standard deviation based modified 
cuckoo optimization algorithm for task scheduling to 
efficient resource allocation in cloud computing. J. Adv Inf 
Technol. 2017;8(4).  

CONCLUSION

In this paper, a resource allocation algorithm named clustered 
input oriented salp swarm algorithm modeled in a hierarchical 
modeling approach. In the proposed model, a clustering 
mechanism has applied to change the FIFO structure execution 
of tasks. The analysis of the proposed model is done rooted on the 
performance metrices like cost evaluation, memory, makespan 
and resource utilization. The analysis given concluded that the 
proposed CIOSSA framework has improvements in resource 
utilization cost and memory usage. The proposed framework 
produces a 5% improvement in makespan and around a 10% 
improvement in resource utilization as compared to existing 
SSA. Future research projects will focus on crucial elements like 
load balance and flow time when scheduling tasks and jobs. 
Additionally, while the findings were only tested on CloudSim, 
they were later confirmed in real-world settings.
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