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Abstract

The present work deals with design, synthesis, mechanistic study and biological evaluation of novel, diverse
compounds as potential inhibitors of cyclin-dependent kinase 2 (CDK2). Multi-complex-based method has been
suggested to generate a comprehensive pharmacophore map of cyclin-dependent kinase 2 (CDK2) based on a
collection of 13 crystal structures of human CDK2 inhibitor complex. The proposed chromeno [4',3':4,5] pyrido [2,3-d]
pyrimidine-1,7-dione derivatives were prepared via a multicomponent reaction of 6-aminothiouracil with salicylic
aldehyde and acetylacetic ester. The elucidation of the reaction mechanism was investigated and was confirmed by
synthetic and spectroscopic methods. All the newly synthesized compounds were tested as CDK2, as antitumor
agents and all of them were found to be active.

Keywords: Pharmacophore; CDK2; Antitumor; Multicomponent
reaction; Chromeno[4',3’:4,5]Pyrido [2,3-d]Pyrimidine-1,7-dione

Introduction
Cancer is a disease, which show random cell growth, invasion, and

sometimes spread in the body via lymph or blood (metastasis) [1]. The
main causes of cancer are the errors in the genetic material of the
transformed cells that results from the effects of carcinogens, like
tobacco smoke, radiation, chemicals, or infectious agents [2]. Other
cancer-promoting genetic abnormalities could be resulted randomly
through errors in the replication of DNA, or are inherited.

Conventional anti-cancer drugs have mainly focused on targeting
DNA synthesis and cell division. However, these drugs show
experimental and clinical efficacy against a variety of cancer types, they
simultaneously cause severe adverse effects due to the lack of selectivity
for tumor cells. In order to avoid these adverse effects, investigators
begin to develop a new class of anti-cancer agents. Signal transduction
or secondary message inhibitors is one of the successful research
findings, which mainly depends on the regulation of signaling
pathways on cell growth, apoptosis, and intracellular protein
degradation, thus, inhibition should lead to anti-cancer effects. Protein
kinases are a class of enzymes, which are involved in a reversible
chemical reaction, in which the terminal phosphate of a molecule of
ATP is transferred to a protein that acts as a substrate [3,4]. This
process is reversible, and is maintained by the presence of other
enzymes (the phosphatases), which catalyze the reverse reaction.
Abnormal levels of phosphorylation by kinases can causes over 400
human diseases, including diabetes, rheumatoid arthritis, many
malignancies and viral diseases [3-5].

Cyclin-dependent Kinases (CDKs) are a group of conserved serine/
threonine kinases. Until now, thirteen CDKs were identified in humans
[6]. To activate CDK, they should bind to a regulatory partner known
as cyclins. In particular, CDK2 associates with, and is regulated by,

cyclin E or A and the overexpression of CDK2 was found in a number
of tumors [5].

No group of regulatory proteins is as intimately coupled to cell cycle
progression as the CDKs [7-11]. Different CDKs are active periodically
throughout the cell cycle and are responsible for driving the cell from
one phase to the next. CDK activity is tightly controlled via [7]
association with cyclins, [8] synthesis and proteolysis of the CDKs
themselves, [9] posttranslational modification and [10] interaction
with a number of natural kinase inhibitors (CDIs) [12]. At different
points throughout the cell cycle, different cyclin proteins are rapidly
degraded, resulting in a loss of activity for their CDK partners. This
loss of CDK activity, in turn, allows transit from one phase of the cell
cycle to the next. CDKs are targets of checkpoints that control entry
into the next phase of the cell cycle. In addition, a number of external
stresses can lead to CDI expression and to subsequent cell cycle arrest.
The three major CDI families include p21CIP/WAF, p27KIP, and
p16INK4a [13-15].

With nearly 850 active kinases in the human body, all sharing a
substantial degree of active-site structural homology, the development
of small-molecule, ATP competitive inhibitors of the various CDKs is a
daunting task [9]. Although the fine-tuning necessary to generate truly
specific control over the cell cycle via selective inhibition of various
essential protein kinases has not yet been realized, a growing library of
structure/activity data coupled with X-ray crystallographic analysis of
small molecules bound to CDK targets promises to hasten efforts
toward rational design of specific CDK inhibitors. Crystallographic
structures for staurosporine, olomoucine, flavopiridol, roscovitine,
purvalanol A, and indirubin-3'-monoxime bound to their CDK
effectors show that all fill the ATP binding site with similar key
hydrogen-bonding interactions. However, additional contacts are made
outside of this binding pocket, where various protein kinases show a
lesser degree of homology [16-19].

Uracil derivatives are versatile building blocks for the synthesis of
nitrogen-containing heteroaromatic species of biological importance
[20-28]. Pyrazolopyridines [29,30], pyrimido-pyrimidines [31],
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pyridopurines [32] and xanthine derivatives [33] have all been
prepared by the functionalization of these important heterocyclic
building blocks, the structures of which are interesting in their own
right, as well as being biologically active pyrimidine nucleosides. The
diverse range of biological activities of uracil derivatives in parasitic
chemotherapy has stimulated considerable interest in their synthesis.
In our program to synthesize and develop small molecules with
significant biological activity [32-35], herein, we describe the design,
synthesis and biological studies of the chromeno [4',3':4,5] pyrido[2,3-
d] pyrimidine-1,7-dione that led to the identification of some
derivatives with promising biological activities as CDK2 inhibitor.
Besides the mechanism of these compounds were studied and proved
chemically.

Molecular Modeling

Computational study of CDK2 inhibitor
Pharmacophore modeling method, as a key tool of computer aided

drug design, has been widely used in the lead discovery and
optimization [36]. However, the ligand-based method often strongly
depends on the training set selection, and the structure-based
pharmacophore model is usually created based on Apo structures or a
single protein–ligand complex, which might miss some important
information. In this study, multicomplex-based method has been
suggested to generate a comprehensive pharmacophore map of cyclin-
dependent kinase 2 (CDK2) based on a collection of 13 crystal
structures of human CDK2–inhibitor complex Figure 1. Our multi
complex-based comprehensive pharmacophore map contains most of
the chemical features important for CDK2–inhibitor interactions [37].
Furthermore, one most frequent-feature pharmacophore model
consisting of the most frequent pharmacophore features was
constructed based on the statistical frequency information provided by

the comprehensive map. Obviously, this investigation provides some
new ideas about how to develop a multicomplex-based pharmacophore
model that can be used in virtual screening to discover novel potential
lead compounds.

Generation of most frequent features
A comprehensive pharmacophore map was developed utilizing 13

CDK2–inhibitor complex structures, which were taken from the
protein data bank (PDB) (Figure 1). Wide range of biological activities
(IC50) was chosen, ranging from 8 to 25000 nM. All the ligands were
docked to CDK2 protein 1G5S with default parameters of C-Docker
except using 20 poses per ligand, then all the resulting poses were used
in pharmacophore hypothesis. Structural information from the
training set identified a set of features crucial for activity and was
considered to represent a pharmacophore hypothesis. HypoGen
module in Discovery Studios DS 3.0 [38] was used to generate our
pharmacophore models wherein it evaluates a collection of
conformational models for all compounds, and maps them to the
selected crucial features.

The top ranked pharmacophore model is expected to identify the
common binding features and the hypothetical orientation of the
active compounds interacting with their target. Our model is
represented by two hydrogen bond acceptor centers (HBA2.11,
HBA3.11; green color) and one hydrophobic center (Hydrophobic
1.11; cyan color) (Figures 1 and 2). The interfeature distances were
considered to be 6.06, 10.32 and 6.49 Å for distances between the
hydrogen bond acceptor 2.11 and hydrogen bond donor 3.11,
hydrogen bond acceptor 3.11 and hydrophobic center 1.11, the
hydrophobic center 1.11 and hydrogen bond acceptor 2.11,
respectively. Only one angle constraint was used for the hydrophobic
and the acceptor atom features, thus allowing the hydrophobic centers
to cover a larger domain.

Figure 1: 13 ligands wuth the name of their crystal structures, which used for building pharmacophore model.
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Figure 2: Pharmacophore model, which derived from 13 CDK2
crystal structures and used in the pre-selection of the proposed
compounds.

Figure 3: Sterically refined versions of our pharmacophore with 40
added exclusion volumes.

Addition of exclusion volumes
Although ligand-based pharmacophores serve as excellent tools to

probe ligand/macromolecule recognition and can serve as useful 3D-
QSAR models and 3D search queries, they suffer from a major
drawback: They lack steric constrains necessary to define the size of the
binding pocket. This liability renders pharmacophoric models rather
promiscuous. Therefore, we decided to complement our selected
pharmacophore model with exclusion spheres, which resemble
sterically inaccessible regions within the binding site. The active site
was defining using 1G5S and all the heavy atoms within 4°A of the
bounded ligand were considered as excluded volumes. Figure 3 shows
the final pharmacophore with 40 added exclusion volumes. Using this
generated pharmacophore model, we were able to map our proposed
compounds into the model to locate the subset of promising
compounds that are capable of binding to CDK2 with a similar set of

interactions. Finally, the proposed compounds with fit values (≥ 1.5)
were selected for chemical synthesis and biological evaluation. Figures
4 and 5 demonstrate the mapping of compounds 4a and 4c to the
generated pharmacophore with fit values 2.95 and 2.86 respectively.

Figure 4: Mapping of compound 4a to the sterically-refined versions
of our pharmacophore (Fit Value=2.95).

Figure 5: Mapping of compound 4c to the sterically-refined versions
of our pharmacophore (Fit Value=2.86).

Chemistry
In this connection, hetero-fused benzopyranopyridines are a poorly

studied class of polycondensed heterocycles and the synthetic
approaches used by researcher to access these structures have
invariably involved multistep sequences [39-41]. In this paper, our
efforts aimed to the discovery of multicomponent reaction (MCR) to
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synthesize compounds with anti-cancer activities. We found that
combining 6-aminothiouracil 1 with salicylic aldehyde and acetylacetic
ester leads to formation of 2,3-dihydrochromeno [4,3-d]pyrido[2,3-
d]pyrimidine derivatives 2. Generally, good yields of these
polyheterocyclic compounds are obtained when mixtures of the three
starting components and one drop of piperidine are refluxed in acetic
acid for 14 h. The desired products precipitate upon cooling of the
reaction mixtures and a simple filtration provides analytically pure
material ( >95%). The reactivity of compound 2 towards different
amines was studied and the amino derivatives 4 was the only isolated
product not compound 3 as established by 1HNMR which showed the
disappearance of signal at 2.6 due to SCH3 and appearance of new
signal at 10.6 due to a new NH group. Finally, the reactivity of methyl
group at position 6 was proved by reacting compound 4 with different
aldehydes in acetic acid and freshly fused sodium acetate and the only
product was found to be the vinyl derivatives 5 with up to 90% yield
(Scheme 1).

Scheme 1: MCR synthesis of chromeno[4',3':4,5]pyrido[2,3-
d]pyrimidine-1,7-dione derivatives.

Scheme 2: 3-acetylcoumarin as intermediate in the discovered
MCR.

Scheme 3: Adduct as intermediate in the discovered MCR.

To investigate the scope of this process with respect to the
acetylacetic ester component, we attempt to replace it with ethyl
benzoylacetate. However, the reaction was unsuccessful in this case,
possibly due to the change in electronic and steric environment of the
ketone carbonyl.

Compound CDK2

IC50 (µM)

A2780 (µM) Fit Value Fit Value of Steric
pharmacophore

1 0.41 0.56 2.74 2.6

4a 2.1 0.37 1.92 1.5

4b 0.25 2.51 0.75 1.6

4a 0.28 0.48 2.94 2.95

4b 0.3 0.7 2.93 2.93

4c 0.295 0.11 2.62 2.86

4d 2.1 0.53 2.95 2.95

4e 2.0 0.26 2.93 2.73

4f 0.26 0.47 2.65 2.9

Table 1: Biochemical assay and antitumor activity of the newly
synthesized compounds.

The initial evaluation of the synthesized polyheterocycles for CDK2
and antitumor activities revealed significant inhibitory activities as
CDK2 inhibitors with IC50 ranged from 0.25 to 2.1 µM and all the
newly synthesized compounds showed good antitumor effect on the
A2780 cell lines ranging from 0.11 to 2.5 µM Table 1. By Analysis the
data in Table 1, we found that there is a good correlation between the
steric pharmacophore and the biological results. All the synthesized
compounds were found to be mapped to at least 2 pharmacophoric
features so all the compounds were found to be active and we think
that the side chains are crucial for improving the biological activities.
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Experimental
Reagent and solvents were obtained from commercial suppliers and

used without further purification. Thin layer chromatography (TLC)
analytical separation were conducted with E. Merck silica gel F-254
plates and were visualized with UV light (254 nM). All melting points
are uncorrected. IR spectra were recorded (KBr) on a Pye Unicam
SP-1000 spectrophotometer. Proton nuclear magnetic resonance
(1HNMR) spectra were recorded in the deuterated solvents specified
on GEMINI – 300BB spectrometer operating at 300 MHz. Chemical
shifts are reported in parts per million (δ) from the tetramethylsilane
(TMS) as internal standard. Data are reported as follows: chemical
shifts, multiplicity (br=broad, s=singlet, d=doublet, t=triplet,
m=multiplet).

6-methyl-3-(methylthio)-1H-chromeno[4',3':4,5]pyrido[2,3-
d]pyrimidine-1,7(2H)-dione (2)

Method A: To a mixture of acetyl acetic ester (13 g, 0.1 mol),
salicylic aldehyde (12.2 g, 0.1 mol) and 6-aminothiouracil derivative 1
(15.7 g, 0.1 mol) was added few drops of piperidine. The reaction
mixture was stirred for 15 min after which time acetic acid (200 mL)
was added and the mixture was refluxed for 14 h. The desired product
precipitate upon cooling of the reaction mixture, simple filtration and
washing with dilute ethanol provides analytical pure material.

Method B: A solution of adduct 7 (34.5 g, 0.1 mol) in glacial acetic
acid (200 mL) was refluxed for 14 h. The reaction mixture was cooled,
poured onto ice-cold water and filtered. The resulting precipitate was
washed well with water and alcohol then air dried to give the desired
product in very good yield. 95% yield as buff solid, Mp>320-323°C; IR
(KBr cm-1) 3260, 1710, 1660, 1600; 1H NMR (300 MHz, DMSO-d6)
12.05 (s, 1H, NH), 8.21-8.18 (d, 1H, HAr), 7.7-7.62 (t, 1H, HAr),
7.4-7.38 (d, 1H, HAr), 7.26-7.23 (t, 1H, HAr), 2.95 (s, 3H, CH3), 2.53
(s, 3H, SCH3); 13C NMR (75 MHz, DMSO-d6) 15.8, 25.7, 120.1,
122.2, 125.7, 128.5, 131.8, 132.9, 135.4, 147.5, 149.5, 150.4, 151.1, 155.3,
160.5, 164.1; MS: m/z calcd for C16H11N3O3S: 325.05 found: 325.

3-Amino-6-methyl-1H-chromeno[4',3':4,5]pyrido[2,3-
d]pyrimidine-1,7(2H)-dione derivatives (4a,b)

To a mixture of compound 2 (16.25 g, 0.05mol) and the appropriate
amine (0.052 mol) in DMF (100 mL) was added conc. HCl (2 mL) and
the reaction mixture was refluxed for 24 h. After completion of the
reaction (TLC), the solvent was concentrated under reduced pressure
and poured onto cold water. The desired product was obtained by
filtration, washing well with water and cold ethanol.

3-[(2-hydroxyethyl)amino]-6-methyl-1H-chromeno[4',3':
4,5]pyrido[2,3-d]pyrimidine-1,7(2H)-dione (4a)

75% yield as yellow solid, Mp>300°C; IR (KBr cm-1) 3330,3220,
3170, 1700, 1680, 1590; 1H NMR (300 MHz, DMSO-d6) 12.05 (s, 1H,
NH), 11.57 (s, 1H, NH), 8.2-8.18 (d, 1H, HAr), 7.7-7.64 (t, 1H, HAr),
7.4-7.36 (d, 1H, HAr), 7.29-7.24 (t, 1H, HAr), 4.9 (s, 1H, OH),
3.28-3.26 (t. 2H, CH2), 2.98-2.9 (t, 2H, CH2), 2.72 (s, 3H, CH3); 13C
NMR (75 MHz, DMSO-d6) 20.7, 35.3, 60.3, 115.4, 118.2, 120.9, 125.1,
130.2, 135.4, 150.1, 155.3, 158.8, 160.3, 163.5, 168.9, 170.2; MS: m/z
calcd for C17H14N4O4: 338.10 found: 338.

4-((6-methyl-1,7-dioxo-2,7-dihydro-1H-chromeno[4',3':
4,5]pyrido[2,3-d]pyrimidin-3-yl)amino)
benzenesulfonamide (4b)

80% yield as orang solid, Mp>300°C; IR (KBr cm-1) 3270, 3200,
3170, 1720, 1660, 1610; 1H NMR (300 MHz, DMSO-d6) 11.58 (s, 1H,
NH), 11.28 (s, 1H, NH), 8.29-8.26 (d, 2H, HAr), 8.19-8.16 (d, 1H,
HAr ), 7.72-7.69 (t, 1H, HAr), 7.66-7.6 (d, 2H, HAr), 7.49-7.42 (d, 1H,
HAr), 7.35-7.28 (t, 1H, HAr ), 7.2 (s, 2H, NH2), 2.8 (s, 3H, CH3); MS:
m/z calcd for C21H15N5O5S: 449.08 found: 449.

3-amino-6-vinyl-1H-chromeno[4',3':4,5]pyrido[2,3-
d]pyrimidine-1,7(2H)-dione derivatives 5

To a mixture of amino derivatives 4 (0.01 mol) and the appropriate
aldehyde (0.012 mol) in glacial acetic acid (100 mL) was added freshly
fused sodium acetate (0.05 mol). The reaction mixture was refluxed for
12 hrs. The desired product was obtained upon cooling of the reaction
mixture, filtration and washing well with water and alcohol provides
pure products.

3-((2-hydroxyethyl)amino)-6-styryl-1H-chromeno[4',3':
4,5]pyrido[2,3-d]pyrimidine-1,7(2H)-dione (5a)

70% yield as yellow solid, Mp>300°C; IR (KBr cm-1) 3310,3200,
3150, 1690, 1660, 1590; 1H NMR (300 MHz, DMSO-d6) 10.73 (s, 1H,
NH), 10.69 (s, 1H, NH), 8.38-8.31 (d, 1H, HAr), 7.97-7.86 (t, 1H,
HAr), 7.79 (s, 1H, Hvinyl), 7.7 (s, 1H, Hvinyl )7.6-7.57 (t, 1H, HAr),
7.55-7.5 (d, 1H, HAr), 7.37-7.32 (m, 5H, HAr), 4.5 (s, 1H, OH),
2.92-2.85 (m, 4H, 2CH2); (LC–MS): m/z calcd for C24H18N4O4:
426.13 found: 426.

3-((2-hydroxyethyl)amino)-6-(4-hydroxystyryl)-1H-
chromeno[4',3':4,5]pyrido[2,3-d]pyrimidine-1,7(2H)-dione
(5b)

77% yield as yellow solid, Mp>300°C; IR (KBr cm-1) 3230,3200,
3170, 1710, 1650, 1600; 1H NMR (300 MHz, DMSO-d6) 11.6 (s, 1H,
NH), 11.44 (s, 1H, NH), 8.46-8.32 (d, 1H, HAr), 8.3 (s, 1H, Hvinyl)
7.87-7.82 (t, 1H, HAr), 7.78 (s, 1H, Hvinyl), 7.6-7.57 (d, 1H, HAr ),
7.54-7.51 (d, 2H, HAr), 7.15-7.13 (t, 1H, HAr), 7.1-7.0 (d, 2H, HAr),
6.9-6.82 (t, 1H, HAr), 4.5 (s, 1H, OH), 2.86-2.76 (m, 4H, 2CH2); 13C
NMR (75 MHz, DMSO-d6) 40.6, 59.8, 110.5, 112.3, 115.5, 116.9, 120.2,
125.5, 126.6, 130.5, 133.4, 135.8, 137.9, 142.1, 155.5, 158.2, 160.1, 165.2,
168.5, 172.4, 180.3; (LC–MS): m/z calcd for: C24H18N4O5: 442.13
found: 442.

6-(2-(furan-2-yl)vinyl)-3-((2-hydroxyethyl)amino)-1H-
chromeno[4',3':4,5]pyrido[2,3-d]pyrimidine-1,7(2H)-dione
(5c)

66% yield as yellow solid, Mp>300°C; IR (KBr cm-1) 3230,3200,
3170, 1710, 1650, 1600; 1H NMR (300 MHz, DMSO-d6) 10.47 (s, 1H,
NH), 9.36 (s, 1H, NH), 8.16 (s, 1H, Hvinyl), 8.16 (s, 1H, Hvinyl),
8.07-8.01 (t, 1H, HAr), 7.98-7.94 (d, 2H, HAr ), 7.89-7.86 (d, 1H, HAr),
7.84-7.78 (t, 1H, HAr ) 7.63-7.58 (t, 1H, HAr), 7.58-7.52 (d, 1H, HAr),
7.44-7.36 (d, 2H, HAr), 7.36-7.32 (m, 2H, HAr), 7.16 (s, 2H, NH2);
13C NMR (75 MHz, DMSO-d6) 40.1, 63.6, 107.8, 110.7, 120.1, 122.5,
125.4, 128.9, 133.3, 137.5, 139.9, 145.7, 148.2, 150.3, 155.3, 156.8, 159.6,
160.2, 162.1, 163.3, 165.9, 169.5; (LC–MS): m/z calcd for:
C22H16N4O5: 416.11 found: 417.
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4-((1,7-dioxo-6-styryl-2,7-dihydro-1H-chromeno[4',3':
4,5]pyrido[2,3-d]pyrimidin-3-yl)amino)benzenesulfonamide
(5d)

82% yield as red solid, Mp>300°C; IR (KBr cm-1) 3230, 3210, 3190,
1700, 1680, 1600; 1H NMR (300 MHz, DMSO-d6) 12.06 (s, 1H, NH),
11.58 (s, 1H, NH), 8.29-8.26 (d, 2H, HAr), 8.19 (s, 1H, Hvinyl), 8.16 (s,
1H, Hvinyl), 7.72-7.69 (d, 2H, HAr), 7.66-7.63 (t, 1H, HAr), 7.6-7.61
(d, 1H, HAr), 7.49-7.42 (d, 1H, HAr), 7.39-7.37 (t, 1H, HAr ), 7.35-7.25
(m, 5H, HAr), 7.23 (s, 2H, NH2); MS: m/z calcd for C28H19N5O5S:
537.11 found: 537.

4-((6-(4-hydroxystyryl)-1,7-dioxo-2,7-dihydro-1H-
chromeno[4',3':4,5]pyrido[2,3-d]pyrimidin-3-
yl)amino)benzenesulfonamide (5e)

90% yield as reddish brown solid, Mp>300°C; IR (KBr cm-1) 3300,
3250, 3200, 3160, 1690, 1650, 1590; 1H NMR (300 MHz, DMSO-d6)
12.1 (s, 1H, NH), 11.58 (s, 1H, NH), 11.28 (s, 1H, OH), 8.3-8.26 (d, 2H,
HAr), 8.2 (s, 1H, Hvinyl), 8.16 (s, 1H, Hvinyl), 7.7-7.68 (d, 2H, HAr),
7.65-7.61 (t, 1H, HAr), 7.58-7.6 (d, 1H, HAr), 7.5-7.42 (d, 1H, HAr),
7.38-7.36 (t, 1H, HAr ), 7.35-7.33 (d, 2H, HAr), 7.3-7.28 (d, 2H, HAr ),
7.23 (s, 2H, NH2); 13C NMR (75 MHz, DMSO-d6) 110.3, 115.2, 118.2,
120.3, 122.4, 125.5, 128.6, 130.1, 135.6, 137.9, 140.1, 143.3, 144.5, 145.6,
147.6, 150.2, 152.3, 158.1, 160.2, 163.5, 167.9, 170.2, 175.2, 180.3; MS:
m/z calcd for C28H19N5O6S: 553.11found: 553.

4-((6-(2-(furan-2-yl)vinyl)-1,7-dioxo-2,7-dihydro-1H-
chromeno[4',3':4,5]pyrido[2,3-d] pyrimidin-3-
yl)amino)benzenesulfonamide (5f)

69% yield as brown solid, Mp>300°C; IR (KBr cm-1) 3220, 3200,
3140, 1700, 1660, 1600; 1H NMR (300 MHz, DMSO-d6) 10.47 (s, 1H,
NH), 9.36 (s, 1H, NH), 8.16 (s, 1H, Hvinyl), 8.16 (s, 1H, Hvinyl),
8.07-8.01 (t, 1H, HAr), 7.98-7.94 (d, 2H, HAr ), 7.89-7.86 (d, 1H, HAr),
7.84-7.78 (t, 1H, HAr) 7.63-7.58 (t, 1H, HAr), 7.58-7.52 (d, 1H, HAr),
7.44-7.36 (d, 2H, HAr), 7.36-7.32 (m, 2H, HAr), 7.16 (s, 2H, NH2);
MS: m/z calcd for C26H17N5O6S: 527.09 found: 527.

3-acetyl-2H-chromen-2-one (6)
Piperidine (5 mol %) was added to a stirred solution of 2-

hydroxybenzaldehyde (1.22 g, 10 mmol), ethyl acetoacetate (1.43 g, 11
mmol) in CH3CN (40 mL) at room temperature. The contents were
stirred for 4 h at the same temperature. After completion of the
reaction (TLC), the solvent was removed under reduced pressure and
the crude product was subjected for column chromatography
purification using silica gel with hexane/ethylacetate (8:2) as eluent to
give 3-acetyl-2H-2-chromenone (6) in 95% yield as yellow solid, mp
123-125°C (lit. 125-127) [42].

5-(3-acetyl-2-oxochroman-4-yl)-6-amino-2-
(methylthio)pyrimidin-4(3H)-one (7)

To a solution of acetyl acetic ester (13 g, 0.1 mol), salicylic aldehyde
(12.21 g, 0.1 mol) and 6-aminothiouracil derivative 1 (15.7 g, 0.1 mol)
in DMF (100 mL) was added piperidine (5 mol %). The reaction
mixture was stirred at room temperature for 24 h and then poured
onto cold water. The desired product was obtained after filtration,
washing with water and air drying.

90% yield as white solid, Mp 290-293°C; IR (KBr cm-1) 3200, 3140,
1680, 1650, 1590; 1H NMR (300 MHz, DMSO-d6) 12.53 (s, 1H, NH),
10.75 (s, 1H, NH), 9.87 (s, 2H, NH2), 7.25-7.19 (t, 1H, HAr), 7.06-6.96
(d, 2H, HAr ), 6.88-6.85 (d, 1H, HAr), 6.74-6.65 (t, 1H, HAr ) 4.78-4.7
(d, 1H, H3Chromon), 3.7-3.69 (d, 1H, H4Chromon), 2.42 (s, 3H,
SCH3), 2.09 (s, 3H, CH3); 13C NMR (75 MHz, DMSO-d6) 15, 30.5,
35.1, 65.4, 95.8, 120.5, 127.4, 128.9, 130.1, 133.9, 150.7, 156.6, 160.1,
165.3, 172.2, 195.1; MS: m/z calcd for C16H15N3O4S: 345.08 found:
345.

Biology

Enzymatic activity inhibition assay
The inhibition studies of cell cycle dependent kinase 2 were

performed for the synthesized compounds and CDK2/cyclin A enzyme
was purified from infected sf21 insect cells. For baculoviral
overexpressions of proteins, we sub-cloned human CDK2 c-DNA
tagged by hexa-histidine on its N-terminal and human cyclin A c-DNA
into pBacPak 8 expression vector, respectively. Baculovirus which
carries each gene was generated using baculovirus generating kit.
CDK2/cyclin A enzyme was purified using Ni+2- affinity resin from
sf21 insect cell culture into which CDK2 and cyclin A carrying
baculoviruses were cotransfected. Enzyme assays were done in 20 mL
of 50 mM Tris-HCl containing 10 mM ATP, 0.2 mCi of gamma-P32
ATP, 10 mM MgCl2, 5 mM DTT and 4 mg of histone H1 was used as a
substrate. The reaction was continued for 10 min in the presence of
inhibitors and stopped by adding 10 mL of 30% phosphoric acid. The
stopped mixtures were spotted onto P81 paper and were washed with
10 mM Tris-HCl (pH 8.0) containing 0.1 M NaCl five times. The
radioactivity of each spot was quantified with BAS imager. The
concentration of inhibitor that gives 50% inhibition was designated as
IC50 value.

Conclusion
A library of virtual chromeno[4',3':4,5]pyrido[2,3-d]pyrimidine-

dione was designed. Pharmacophore model was generated using
structurally diverse existing CDK2 inhibitors from 13 crystal
structures. Exclusion volumes were added to the chosen model to
sterically refine it. The sterically-refined version of the pharmacophore
was generated and used as 3D query for compound selection.
Proposed compounds with high fit values (≥ 1.5) were selected for
synthesis and in vitro biological evaluation. Preliminary in vitro
evaluation data is promising and consistent with our prediction. The
mechanistic route for the synthesized compounds was confirmed by
synthetic and spectroscopic methods.
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