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Abstract 
Gait asymmetry is characterized as the dynamic differences between contralateral limbs, it has been shown to 

be caused by disease, age, clinical interventions and limb dominance. In this study, a mobile gait assessment system 
was developed for the evaluation of gait asymmetry in persons with simulated leg length discrepancy (sLLD). LLD is 
a disorder that affects 40-70% of the population requiring clinical intervention when the dissimilarity between limbs 
exceeds 3.7%. In out of clinic applications, an ambulatory gait symmetry system may be used to monitor postsurgical 
outcomes based on objective temporal and kinetic features. For this, a wireless gait symmetry system was designed 
and tested to measure ground reaction forces from insole worn pressure sensors. Thirteen metrics were extracted 
from a group of 9 subjects and a linear discriminant analysis performed for feature selection. Machine learning 
classifiers were used to differentiate between normal walking and sLLD. Applying majority voting to an Ensemble 
AdaBoost Tree classifier resulted in an overall accuracy of 89.9%, a false positive rate of 3.9%, and a sensitivity 
of 83.6%. Results indicate the wearable sensor is a viable option for out-of-clinic monitoring of asymmetry using 
machine learning.

undertaken, due largely to high costs and undue complexity in results 
analysis and relative low cost efficiency, with the two major consumer 
ground reaction force (GRF) insole systems, F Scan (Tekscan, Boston, 
Ma) and Pedar (novel, Munich, Germany), costing thousands of US 
dollars. The Pedar is limited to 2 GB of local storage during wireless 
recording, while the F Scan is limited to tethered, wireless or data 
logging, and its wireless data logging is limited by battery consumption 
to two hours. In essence, these constraints limit these devices to either 
short recording sessions or the compromise between wireless streaming 
and short wireless data recordings [10]. This study was purposed to 
design and prototype a wearable, wireless, GRF gait symmetry analysis 
system that may smartly detect sLLD. A proposed solution to the class-
label problem, inherent to AdaBoost Ensemble learners, was explored 
with the implementation of majority voting after weighted voting for 
finding a minimal step count for detection.

Related Works
Techniques for assessing LLD are commonly segmented into 

clinical and imaging modalities. The two most common clinical methods 
include lift blocks and the tape measure; these methods are useful 
screening tools that offer a quick, non-invasive diagnosis. However, 
these are less reliable than imaging modalities and suffer from empirical 
measurement errors. Imaging modalities include; radiography, 
computed radiography, ultrasound, computed tomography (CT) 
scanogram, and MRI scan [8]. Except for ultrasound and MRI, these 
imaging technologies expose the subject to radiation. These also incur 
an additional cost to the patient and the medical professional due to 

Keywords: Gait asymmetry; Ground reaction forces; Leg length
discrepancy; Wearable sensors; Machine learning; Majority voting

Introduction
Leg length discrepancy (LLD) is a disorder which affects 40 to 70% of 

the population [1], requiring medical intervention when the unilateral 
discrepancy exceeds 2 cm or 3.7% [2,3]. Symptomatically LLD leads to 
gait asymmetry throughout gait: with changes in cadence, increased 
energy consumption, and abnormal ground reaction force distributions 
as the center of mass is abnormally displaced along the plant of the foot 
[4,5]. Conditions that arise as a cause of LLD include lower back pain, hip 
pain, and stress fractures [6,7]. LLD can be etiologically sectioned into 
prenatal events, such as dislocations, infections, and hemihypertrophy 
leading to developmental abnormalities. LLD may also be acquired in 
the case of surgeries, cancer and degenerative disorders [8]. Further 
classifications can be drawn between structural and functional causes, 
or differences in bony structure and gait asymmetries caused without 
osseous discrepancies. The most accurate method for diagnosing LLD 
is radiography followed by computer tomography; these two methods 
offer the highest resolution, allowing the detection of inequalities as low 
as 1 mm. Although sensitivity is high, radiation exposure, high costs, 
and the need of a technician for analysis deters implementation [8]. 
Consequently, LLD is most commonly examined using a tape measure, 
palpating of body landmarks or using lift blocks; these methods 
suffer from great controversy and are prone to loss of accuracy due to 
variation caused by subjective measurements [1].

The rapid growth of wireless, wearable sensors for gait analysis pose 
an important shift away from the common non-ambulatory methods 
used to analyze locomotion. In the last decades, gait analysis has been 
constrained to studies involving motion capture and the obligatory body 
markers and force mats. These constraints limit normal locomotion 
and remove important variation representative of each individual’s gait 
[9]. In addition to the behavioral constraints added by the non-mobile 
common gold standard measurement tools, high prices also deter 
medical professionals from making motion studies common practice 
[8]. Several commercial retailers offer gait analysis systems that promise 
to cover the void in mobility associated with lab-bound methods. 
Yet, no significant clinician or at-home implementation has been 
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the high cost of acquisition, maintenance, and special equipment and 
staff needed for operation [8]. Additionally, a recent study found no 
correlation between CT scanogram and the clinical measurement 
methods (i.e., tape measure and lift blocks) for LLD detection, resulting 
in different diagnosis results [11]. Additionally, Badii et al. found 
low intraclass correlation coefficients when assessing interobserver 
reliability for the tape measure, as compared to radiography [12]. 
Medical professionals may not have access to high performing imaging 
modalities, unfortunately resorting to outdated clinical measurement 
tools due to the disadvantages mentioned above. The dissonance 
between the clinical and imaging modalities may be resolved by 
wearable sensors capable of objective measurements in a non-invasive 
and relatively cheaper manner.

To the authors’ knowledge, the most recent and comparable 
studies regarding wearable gait analysis focus on using inertial 
measurement units or pressure sensors to assess asymmetry in gait 
[13-15], extract gait features [16-19], or differentiate other disease 
states [20-24]. Past studies have explored real and sLLD using wearable 
inertial measurements (IMU) units [25,26], or using non-mobile 
motion capture systems [6]. There is no study yet using low-sensor-
count, in-shoe, wireless pressure sensors. We proposed to employ a 
low-cost, low-sensor-count, in-shoe piezoresistive system for GRF, 
instead of IMU-based asymmetry based measurements, as previous 
studies revealed that LLD leads to significant changes to gait in ground 
reaction forces and their kinetic components [3,27-30], which can’t be 
measured by IMU sensors.

The experimental design in this study was in line with past studies 
using simulated leg length discrepancy (LLD) to analyze changes in 
gait. Assogba et al. demonstrated that both people with real and sLLD 
utilize similar compensatory techniques to limit energy expenditure 
[31]. Young et al. found that the lateral flexion taken from subjects with 
sLLD are similar to radiography measures for subjects with clear LLD 
[32]. Cumming et al. found anterior rotation of the ilium on the short 
leg in both simulated and real LLD [33]. Furthermore, Cooperstein’s 
review found that posterior innominate rotation in the anatomically 
long leg is apparent in both simulated and real LLD [34].

The spatiotemporal, kinetic, and kinematic metrics associated 
with the paired motion of lower limbs have also been successfully 
implemented with artificial intelligence (AI) paradigms to efficiently 
categorize disease states through non-invasive quantitative approaches 
[35]. The advantage of using AI is the ability to classify highly 
dimensional non-linearly separable data sets, as well as the ease by 
which new data can be used to improve the classifiers’ performance 
[36]. For the problem of pattern recognition, supervised learning 
aims to find a function representative of training sample pairs. Such 
learning algorithms may be divided into memory-based and non-
memory-based learning. Memory-based methods include k-nearest 
neighbors, kernel regressions, and support vector machines (SVMs). 
These rely on storing all data and inferring directly from neighboring 
samples to make a prediction on the classification of new data [37]. 
Non-memory-based methods include artificial neural networks, 
decision-tress, and naïve Bayes classifiers. These rely on capturing the 
function representative of the training sample pairs before new data is 
offered for classification [38]. Both memory and non-memory-based 
algorithms suffer from relying on a single hypothesis, derived from 
the training space. This proves problematic when several suggested 
hypotheses provide the same accuracy based on training data, or when 
algorithms get stuck on local minima due to computational constraints 
[39]. Ensemble methods solve this issue by providing new training data 

in an iterative manner based on votes from suggested hypotheses and 
thus, generating representative functions which may lay outside the 
training space and average similarly accurate hypotheses solving the 
computational and statistical problems. A recent comparison between 
memory, non-memory-based, and ensemble supervised learning 
methods found that boosted tress performed better than the rest [40] 
(Figure 1).

Materials and Methods
Device architecture

To wirelessly collect data and extract GRF metrics from gait, 
a wearable symmetry analysis system was designed, prototyped 
and tested. The device depicted on Figure 1a shows the size of the 
system and Figure 1b shows the mounting on the lateral part of the 
foot. The system employs a CC3200 low-power Wi-Fi module for 
wireless communication. This Texas Instruments Internet-of-Things 
prototyping platform has a 12-Bit ADC and 256 kB of RAM. On-
board data recording is built-in with a micro-SD flash card capable of 
memory expansion up to 512 GB. This ancillary data acquisition route 
takes precedence when wireless data streaming is either not guaranteed 
or needed. A power-path management IC was used for charge, voltage, 
and temperature measurements. Bipolar power was established to feed 
an MCP6004 Op-Amp, through a negative-output low-dropout linear 
regulator [41]. The insole shown in Figure 2 shows the force-sensing 
insole, comprised of three Tekscan A301 piezoresistive transducers 
capable of sensing between 0 to 445 newtons with 3% linearity error, 
2.5% repeatability and 4.5% hysteresis at 80% full force application. As 
recommended by the manufacturers, calibration of the transducers 
was performed using a dual source inverting Op-Amp setup. Known 
loads were applied and the output values were recorded to identify the 
calibration relationship.

Experimental design and participant selection

The study was conducted in the Human Cyber-Physical System 
Laboratory with Institutional Review Board approval from Florida 
International University, Miami, FL. Nine participants, between 21 
and 31 years of age, without previous musculoskeletal diagnoses or 
LLD were asked to walk along a 120 m walkway at comfortable walking 
speeds while wearing the wireless gait analysis system. Unaltered 
walking was considered symmetric and set as the ground truth against 
which sLLD would be compared. Similar to Khamis and Mahar [6,42], 
LLD was simulated using a shoe spacer (Evenup Shoe Balancer. Buford, 
GA) worn on the right foot, which applied 2.5 cm of length inequality 
to the user’s leg (Figure 1b).

Figure 1: (a) Wireless gait symmetry system is depicted. (b) System shown 
mounted on lateral part of foot, while subject’s gait is altered using 2.5 cm 
Evenup shoe spacer.



Citation: Márquez JS, Atri R, Siddiquee MR, Leung C, Bai O (2018) A Mobile, Smart Gait Assessment System for Asymmetry Detection Using 
Machine Learning-Based Classification. J Biomed Eng Med Devic 3: 135.  doi: 10.4172/2475-7586.1000135

Page 3 of 8

Volume 3 • Issue 2 • 1000135J Biomed Eng Med Devic, an open access journal 

right to left comparison between total pressure at each pressure sensor 
during each stance time on heel ∆Ph _ s, on medial-lateral ∆PM _ s, and 
on toe ∆PT s ,
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where PH is the pressure on heel, PM is the pressure on medial 
lateral, PT is pressure on toe and tc stands for toe contact.

Equation (5) and (6) show the difference in sagittal pressure 
distribution; on medial-lateral to heel ∆RPM-H and on medial-lateral to 
toe ∆RPM-T, which indicate the asymmetry from left to right pressure, 
while the weight of the body is shifting from the heel to the toe.
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Equation (7) and (8) show the difference in peak heel contact 
pressure ∆PP-hc and difference in peak toe contact pressure ∆PP-tc, 
measured at terminal stance, indicating the pressure asymmetry during 
maximal pressure exertion.
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Equation (9) and (10) show the difference in the heel reposition 
time ∆THR and in the toe reposition time ∆TTR indicating the asymmetry 
the time needed to achieve maximum loading response after initial heel 
contact, from right to left foot.
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Equation (11) shows the difference in the time duration from heel 

Automatic gait cycle segmentation

For this study, we designed an automatic phase segmentation 
algorithm which extracts five features – heel contact, maximum heel 
contact, midstance, maximum toe contact, and toe off – from the 
pressure data to segment the gait cycle into four phases – heel strike, 
flat foot, heel off, and swing. This algorithm employs a user-defined 
threshold, which is used to allocate a value of 1 to data over the 
threshold and a value of 0 to data under the threshold. This binary 
signal is differentiated into positive spikes that indicate the heel contact 
and negative spikes that indicate the toe off, which result in the start 
and stop of the stance and swing phases. A midstance is approximated 
by measuring the halfway point between the heel contact and the toe 
off. From these two phases, the maximum heel contact is extracted 
by evaluating the maximum pressure value between the heel contact 
and the midstance. Likewise, the maximum toe contact is extracted by 
evaluating the maximum pressure value between the midstance and 
the toe off. From these two pressure peaks, the loading response, pre- 
swing, and flat foot phases are obtained (Figure 2).

Metric extracion

Thirteen metrics were evaluated to explore the gait asymmetry 
in kinetic and temporal features. The insole shown in Figure 2 shows 
the position of the pressure sensors, with the blue circle indicating 
the position of the sensor at the heel, the orange circle indicating the 
sensor at the medial lateral position, and the yellow circle indicating 
the sensor at the toe position. The pressure sensors were sampled at 125 
Hz. Human locomotion examined using ground reaction force systems 
has slow dynamics: previous studies have used about 100 Hz sampling; 
based on these studies we determined 100 Hz for walking would be 
sufficient [43,44].

The metrics extracted from the wearable system designed in this 
study were: Difference in single stance time duration, ( )sTD i∆  which 
shows the discrepancy between the right foot ( )L

sTD i and left foot ( )L
sTD i

. It is expected for this metric to be a clear indication of limping due to 
the added foot spacer on the right leg, leading to less weight acceptance 
on the left leg [4].

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )R L R R L L
s s s to hc to hcTD i TD i TD i T i T i T i T i∆ = − = − − −       (1)

where i is the i-th single support within a gait cycle, hc is the heel 
contact, and to is toe off.

Equations (2)-(4) show the difference in mean stance pressure, 
calculated between midstance and terminal stance when the weight of 
the body is completely shifted from the heel to the toe, showing the 

Figure 2: Locomotion phases and the selected metrics’ association with 
respect to ground reaction force features and time. Insole shown indicates 
the location of the piezoresistive transducers and respective acquired signals.
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to toe displacement ∆TDHT shows the asymmetry of duration between 
maximum pressure exertion, by heel and toe, between the right and 
left foot.
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Ratio difference of loading ∆RLE and unloading effect ∆RULD in 
equations (12) and (13) show how much force is exerted during heel 
contact and how much force is exerted during toe-off as compared 
between right and left foot, in the case of loading depending highly on 
the preceding contralateral toe off behavior.
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Dimensionality reduction

Since the thirteen-metrics extracted are not necessarily uncorrelated, 
feature selection was performed to determine features with larger inter-
class variation, i.e., larger differences between normal and LLD classes. 
The feature extraction was intended to avoid an overfitting problem 
in succeeding LLD classification as well as to improve computational 
efficiency.

In order to reduce correlated features that do not provide 
classification improvement, feature selection was performed through 
a linear discriminant analysis (LDA) [45]. As stated by Izenman, 
inclusion of a high-dimensional data containing correlated variables 
introduces collinearity leading to overfitting [46]. Performing Fisher’s 
LDA allows for the selection of discriminant variables based on 
separability between classes. LDA was used due to its ability to select 
the features which best separated the two classes of gait. Features were 
also ranked by maximization between class differences based on t-test 
results; this ranking was used to assess which metrics are more accurate 
for sLLD detection.

sLLD Detection using Machine Learning (ML) classifiers

Several of these machine learning-based classifiers, including 
decision tress, artificial neural networks, support vector machines 
(SVMs), genetic algorithms, etc. have been used to differentiate disease 
states [47], and even segment motion data by classifying gait phases 
[48]. In the events of data, which is closely related, as in the case of 
low sLLD, separation may prove difficult, leading to classification 
models with low predictive accuracy. However, evaluating the results 
from several classifying algorithms with low accuracy has proven to 
yield stronger classification results [49]. For this study, support vector 
machines, whose aim is to fit an optimal hyperplane between data sets 
[50], as well as boosting, a type of meta-algorithm used on decision 
tress and discriminant analysis learners to improve classification by 
adapting weights to sort gait cycle features, were explored to generate 
state prediction models. The classification results obtained from these 
models were then used to find an average step count from which 
majority voting could be used to further improve gait classification.

Support vector machines: The main theory behind SVMs has 
been extensively discussed and implemented into classification 
through gait of young and old subjects [36,47,51], patellofemoral pain 
syndrome [52], and gender [53]. This algorithm uses training data to 
create separating vectors based on neighboring data. In the case on 
non-linearly separable data, a kernel is implemented to map data to 
higher dimensional feature space, where data is linearly separated and 
a hyper-plane is returned to the original space for classification. This 
study explored linear, Gaussian and polynomial kernels to determine a 
better sLLD detection performance.

Ensemble boosting: Ensemble learning refers to the method based 
on the training of several low accuracy classification algorithms to 
build an incrementally better performing classifier [54]. The Adaptive 
Boost algorithm (AdaBoost), developed by Freund and Schapire [55], 
is a method which applies weights to miss-classified samples, then 
reduces the error in subsequent iterations. As mentioned by Dietterich, 
ensembles tend to lead to better classifier functions based on statistical 
averaging from votes provided by individual hypotheses, leading to a 
good approximation of the true classification hypothesis. Convergence 
at different local maxima may also prove problematic; ensembles solve 
this by composing a hypothetical function based on an average of the 
different local maxima. This hypotheses averaging also allow for the 
creation of new classifiers that may not be produced based only on the 
training data and the trends represented by it [54].

Supervised training and data processing: The leave-one-out 
standard for cross-validation (LOOCV) was followed to ensure training 
was completely separate from testing data. This strategy involves 
training the classifiers using all subjects except for the one whose data 
will be used for testing. This strategy ensures subject-independent 
classification, helps reduce with overfitting, and increases the usefulness 
of the results. However, LOOCV also leads to less accurate classifiers 
due to the high variability of gait within and between subjects.

Training data S={(x1,y1),…...(xn,y
n)} from the all-but-one subject, 

with input xi and class labels yi ∈ {-1(Normal), 1(LLD)}, is offered to the 
learners. The learners were then tuned by branch size or iterative count 
and learning rate. This procedure leads to convergence of correctly 
labeled samples but also increases computation time. Majority voting 
was employed to average consecutive steps and their interaction, in 
order to find a minimum step count from which a proper estimation of 
sLLD could be made.

Majority voting for gait cycle polling

Consecutive gait cycles were selected from the automatic gait cycle 
segmentation algorithm and used in the voting rounds. Majority voting 
was then applied to the first round of classifiers in groups of single 
(non-voting), 3, and 5 gait cycles, to polynomial and Gaussian SVMs 
as well as Ensemble AdaBoost discriminant and tree learners [49]. The 
employment of this technique was twofold. First, to poll successive 
gait cycles for the possibility of sLLD, as consecutive gait cycles may 
be undergoing a cancellation effect, or adaptation due to the applied 
sLLD [56]. Second, to deal with class-label noise inherent to AdaBoost 
learners, whose weighted voting favors misclassified samples in its 
iterative process leading to overfitting.

Performance analysis

Accuracy, sensitivity, and false positive rate were used to evaluate 
the effectiveness of the sLLD classifiers after majority voting. TP is 
the number of correctly detected sLLD samples, TN is the number of 
correctly classified normal samples, FP are normal samples incorrectly 
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detected as sLLD, and FN are sLLD samples incorrectly detected as 
normal. The Matthews correlation coefficient (MCC) was used to 
gauge the agreement between target and predictions thus measuring 
the quality of the binary classifications, varying between -1 for perfect 
disagreement to 1 for perfect agreement [57].

100%TP TNAccuracy
TP FP TN FN

+
= ×

+ + +
(14)

100%TPSensitivity
TP FN

= ×
+

(15)

100%FPFalse Positive Rate
FP TP

= ×
+

(16)

( )( )( )( )
TP TN FP FNMatthews CorrelationCoefficient

TP FP TP FN TN FP TN FN
× − ×

=
+ + + +

(17)

Results
Piezo-resistive transducer calibration

Figure 3 shows the results of the calibration. The output voltage 
was found to follow a proportional relationship to the applied pressure. 
A 0.9916 coefficient of determination R2 for the linear relationship 
shows a good fit between the recorded response and the equation that 
represents the data recorded (Figure 3).

Feature analysis

Table 1 shows the feature selection after LDA and ranking based 
on statistical significance between classes. The testing accuracy shown 
is the average of all nine subjects for a polynomial SVM classifier. It 
can be noted that the best three performing metrics were loading rate 
(12), time to first peak (8), and stance time (1), with the first being a 
kinetic feature and the latter two being temporal. From best to worst 
performance, the feature selection ranking was as follows: loading rate, 
time to first peak, stance duration, push off rate, heel stance pressure, 
first peak pressure, medial lateral stance pressure, toe stance pressure, 
second peak pressure, pressure distribution form medial lateral to heel, 
time from second peak to toe off, time between maximum cycle peaks, 
and pressure distribution from medial lateral to toe.

Classification results

From Table 2, it can be seen that the resulting data set was made 

up of 49 ± 7 samples for normal walking and 53 ± 6 samples for sLLD 
walking. Table 3 shows that using only stance duration for classification, 
the highest sensitivity and overall accuracy for all ML classifiers was 
achieved using Ensemble AdaBoost Decision Trees with a 5-vote 
majority rating. Training was performed with the highest three ranking 
metrics on the left column and using only loading rate on the right 
column. When using the first three ranked metrics, the overall accuracy 
was higher using 5-vote over no-vote polling with an average increase 
of 1.5%. Similarly, the false positive rate experienced an overall decrease 
of 67.3% after 5 votes over single voting. However, sensitivity decreased 
by 5.4% after 5 votes in comparison to non-voting. Interestingly, for 
all classifiers using the combinations of the first three ranked metrics, 
sensitivity suffered the largest decrease when attempting to decide 
based on 3 votes as opposed to 5. Within individual ML classifiers, 
polling 5 votes over no voting when using three metrics as opposed to 
1 yielded the best accuracy increase and lesser sensitivity decrease for 
both Gaussian and polynomial SVM learners. Meanwhile, the largest 
false positive decreases were also achieved by the two SVM learners 
over 5-poll voting, however when using only 1 metric as opposed to 
3. Both Ensemble AdaBoost learners showed the greatest accuracy
jump after voting using only one feature, with the largest decrease in 
false positives and the smallest decrease in sensitivity. Additionally, the 
average MCC for all classifiers after LDA was 0.76, indicating a good 
overall binary prediction.

The overall best performing classifier was the Ensemble AdaBoost 
Tree, which after polling with 5 votes, achieved an overall accuracy 
increase of 3.4% to 89.9%, a 64.7% decrease in false positives to 3.9%, 
the smallest overall sensitivity decrease at 1.5% to 83.6%, and an MCC 
of 0.86.

Discussion
This study focused on the technical feasibility and validity of using 

a wireless, GRF gait symmetry analysis system for simulated LLD 
detection. sLLD was employed according to the study providing that 
sLLD leads to gait changes without significant statistical differences 
with radiography diagnosed LLD [32]. Being able to control the 
amount of LLD ensures that the detection is effective for the targeted 
sLLD and not of other gait abnormalities. The results of this study 
demonstrate that even with a small population, merging machine-
learning techniques dealt with the gait variability between subjects leads 
to a reliable detection of sLLD. The evaluation of different classifiers 
and the combination of majority voting allowed for the reduction of 
uncorrelated errors characteristic to gait between and within subjects.

Previous studies on sLLD have employed artificial neural networks 
for classification using non-mobile motion tracking systems reaching 
an overall testing accuracy of 83.3% when employing 30 coefficients, 
or features [58]. More recently, research on LLD continues to employ 
lab-bound imaging systems consisting of markers and force plates for 
the identification of LLD [56,59]. However, as the results of this study 
indicate, the implementation of ML classifiers to mobile-acquired 
metrics suggest a useful alternative owing to the flexibility of a wireless 
gait analysis system. The results also show an 89.9% overall accuracy 
while using a relatively small sample population and only requiring 
three metrics.

The type of ML classifier implemented for sLLD detection, showed 
the increase in sensitivity and accuracy and the decrease in false 
positives with majority voting depending on the number of metrics 
used. In the case of both discriminant and tree ensemble classifiers, a 
single feature was enough to provide the best classification models after 

Figure 3: Evaluation of input load to response voltage for calibration of piezo-
resistive transducers.
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voting, whereas both polynomial and Gaussian SVM demonstrated 
the largest increase in performance after voting for model accuracy 
and sensitivity when using three metrics. It has been shown that 
AdaBoost, the ensemble aggregation method used in this study, 
delivers poor probability estimates due to its inherent focus on outliers 
[40]. As proposed by Sabzevari, at high levels of class-label noise, 
the focus should be on instances on which the ensemble classifiers 
agree. Meanwhile, AdaBoost uses weighted majority voting on base 
hypotheses and favors misclassified instances in following iterations, 
leading to a majority vote that is heavily influenced by samples that are 
difficult to sort, which may lead to overfitting. In a recent study, vote-
boosting ensembles were introduced as an alternative means to deal 
with the class-label noise that affects AdaBoost ensembles. For vote-
boosting, the weights of hypothetical classifiers are determined based 
on the degree of agreement or disagreement among predictions [60]. 
In this study, the implementation of majority voting to the result of 
the weighted polling by AdaBoost, has shown to aid in the class-label 
noise issue characteristic to AdaBoost Ensembles. This was achieved 
by the elimination of uncorrelated errors of individual classifiers by 
averaging.

As performance of a classifier is highly dependent on the features 
chosen, linear discriminant analysis was used for dimensionality 
reduction based on correlation and maximization of class separation. 
As shown on Table 3, a three-dimensional training set was enough to 
differentiate between states of walking. This trend between classifier 
performance and low metric count has also been reported by other 
studies [36,52,61]. This may be caused by high correlation between 
metrics and or differing adaptive responses in gait by the addition of 
the foot spacer, also known as cancellation effect [56].

It is interesting to note that the three metrics that vary most 
directly within gait sates were loading rate, time to first peak, and 
stance time, a kinetic-based feature which only requires the input 
from a single pressure sensor at the heel. While time to first peak and 
stance time are both temporal features, the latter may be extracted 
by one pressure sensor at the heel and one at the toe, and the former 
may be extracted by the same pressure sensor needed for loading rate. 
Begg et al. demonstrated that maximum and minimum forces plus 
normalized double support time were enough to differentiate between 
young and old subjects [61], indicating the need for the medial lateral 
pressure sensor in the case when maximum force is not observed at 
the toe. Meanwhile, in increasing ranking, the lowest three performing 
metrics were found to be, pressure distribution from medial lateral 
to toe (6), time between maximum cycle peaks (11), and time from 
second peak to toe off (10). Metric 6 is largely based on the sagittal 
asymmetry during weight bearing, whose effects may be masked by 
compensatory strategies employed by the subjects in an effort to retain 
balance. Metric 11 shows the difference in the time duration from 
heel to toe displacement. Since metric 1, which ranked third overall, 
is also a measure of the asymmetry between time taken for each step, 
compensatory strategies such as dynamic shortening of the affected leg 
may be occurring during weight transfer but not at initial load bearing 
or at push-off in an effort to minimize the displacement of the center 
of mass [3]. Metric 10 was ranked eleventh by the t-test and may help 
clarify at which stage of loading, load bearing or push-off, compensatory 
strategies were being employed. Since loading rate (12) was ranked 
first, this means it showed the greatest difference between normal and 
sLLD walking. It can be concluded that push-off did not experience 
such major changes due to the added foot spacer. This finding may 
be supported by strategies used to decrease energy expenditure [31]. 
Other studies have found that by default, step length may be more 
asymmetric than step times and should also be evaluated in future 
studies to improve classifier performance [56]. Future works will aim at 
performing a clinical feasibility study, comparing the developed system 
with gold standards, as well as implementing data from subjects with 
non-simulated LLD and other gait impairing disorders.

Conclusions
In this article, a mobile, smart gait assessment system was designed 

and tested for the detection of asymmetry in sLLD using machine-
learning classification. Leave-one-subject-out cross-validation 
demonstrated a detection accuracy of 89.9% (± 9.1%) from nine 
subjects using pressure sensors on the insole for temporal and kinetic 

Metric Equation Single Vote
Accuracy (± SD)

T-test
P-Value Ranking

Loading Rate, ∆RLE (12) 63.5 (9.5) 2.87e-301 1
Time to First Peak, ∆Pp_tc (8) 64.6 (13) 1.58e-242 2
Stance Duration, ∆TDs (1) 66.9 (14.3) 5.89e-233 3
Push Off Rate, ∆RULD (13) 54.9 (9.1) 2.36e-09 4

Heel Stance Pressure, c (2) 46.5 (11.9) 9.91e-09 5
First Peak Pressure, Pp_hc (7) 57.1 (14.1) 4.35e-08 6

Medial Lateral Stance Pressure, ∆PM_s (3) 48.2 (16.4) 1.94e-05 7
Toe Stance Pressure, ∆PT_s (4) 49.9 (4.9) 3.62e-05 8

Second Peak Pressure, ∆THR (9) 51.3 (2.4) 4.11e-05 9
Pressure Distribution Form Medial Lateral to Heel, ∆RPM-H (5) 56.9 (17.6) 3.02e-04 10

Time from Second Peak to Toe Off, ∆TTR (10) 52.3 (4.6) 8.16e-04 11
Time Between Maximum Cycle Peaks, ∆TDHT (11) 52.9 (13.7) 1.25e-02 12

Pressure Distribtuion From Medial Lateral to Toe, ∆RPM-T (6) 39.6 (12.3) 4.18e-01 13

List of feature ranking showing 1loading rate, 2time to first peak, and 3stance time as being most sensitive to changes in leg length during gait
Table 1: Feature ranking based on SVM classification.

Participant Normal sLLD
1 41 61
2 56 57
3 39 44
4 42 45
5 57 57
6 49 49
7 53 53
8 42 48
9 58 60

Table 2: Data Set Sample Count Data sample count for each subject during each 
trial.
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Machine Learning 
Classifier

Metrics All Features (No LDA) 3 1
Majority Vote 1 3 5 1 3 5 1 3 5

Polynomial SVM

Sens (± SD) 77.1 (14.3) 50.4 (26.7) 64.8 (22.0) 80.9 (15.4) 58.8 (29.3) 70.6 (30.1) 80.8 (17) 62.1 (30.2) 72 (29.9)
Fls Pos Rt (± SD) 28.7 (23.7) 7.3 (16.4) 10.4 (21.9) 13.5 (8.5) 0.7 (2) 1.2 (3.5) 17.3 (13.6) 2.8 (7.9) 3.7 (10.5)
Accuracy (± SD) 74.2 (13.8) 71.6 (17.9) 77.2 (17.7) 83.7 (9.1) 79 (14.4) 84.7 (14.5) 81.7 (10.2) 79.7 (14.5) 84.2 (14.1)

MCC (± SD) 0.49 (0.28) 0.49 (0.35) 0.58 (0.35) 0.74 (0.19) 0.72 (0.17) 0.82 (0.25) 0.75 (1.7) 0.74 (14) 0.84 (0.25)

AdaBoost Tree

Sens (± SD) 75.8 (14.2) 46.9 (27.9) 62.8 (27.6) 82.8 (13.3) 64.3 (25.1) 75 (24.3) 86.2 (11.3) 69.4 (22.1) 83.6 (18.4)1

Fls Pos Rt (± SD) 26.5 (22.1) 5.6 (11.6) 7.5 (16.0) 20.8 (16.3) 2.8 (7.9) 6.2 (14) 18.2 (10.8) 1.4 (3.9) 3.9 (5.5)
Accuracy (± SD) 74.7 (9.3) 70.6 (11.2) 77.6 (13.2) 81 (10.6) 80.8 (11.9) 84.4 (11.6) 84 (8.9) 84 (10.6) 89.9 (9.1)2

MCC (± SD) 0.52 (0.18) 0.50 (0.19) 0.61 (0.24) 0.73 (0.18) 0.69 (0.22) 0.85 (0.21) 0.75 (0.18) 0.68 (20) 0.86 (0.21)
1,2Results from the majority vote classifiers after dimensionality reduction by the LDA feature selector and the polling by sets of single votes, 3 votes and 5 votes

Table 3: Classifier results for joint sensitivity, false positive rate, and accuracy across polling.

metric extraction. Results indicate that the wireless gait analysis 
system is a viable option for the detection of low-level asymmetry in 
an ambulatory setting. Future works aim to implement automatic 
detection to pathological subjects.

Competing Interests
The authors declare no conflict of interest. The founding sponsors 

had no role in the design of the study; in the collection, analyses, or 
interpretation of data; in the writing of the manuscript, and in the 
decision to publish the results.
Author Contributions

J. Sebastian Márquez, Roozbeh Atri, Masudur R. Siddiquee, and Ou Bai 
conceived and designed the experiments. J. Sebastian Márquez, and Masudur 
R. Siddiquee performed the data acquisition. J. Sebastian Márquez, Connie 
Leung, and Ou Bai wrote the algorithms for metric extraction and machine learning 
implementation. J. Sebastian Márquez Roozbeh Atri and Masudur R. Siddiquee 
analyzed the results. J. Sebastian Marquez wrote the article and Connie Leung 
revised the manuscript. All authors read and approved this manuscript.

Availability of Data and Materials

All datasets used and/or analyzed during the current study are available from 
the corresponding author upon reasonable request.

Acknowledgments

This study was partly supported by the National Science Foundation (CNS-
1552163). The authors would like to thank the volunteers who participated in the 
study.

References

1. Gurney B (2002) Leg length discrepancy. Gait Posture 15: 195-206.

2. Johari A, Maheshwari R, Maheshwari S (2015) Limb-Length Discrepancy. In: 
Passport for the Orthopedic Boards and FRCS Examination, pp: 463-467.

3. Kaufman KR, Miller LS, Sutherland DH (1996) Gait asymmetry in patients with 
limb-length inequality. J Pediatr Orthop 16: 144-150.

4. Dombroski CE, Andrew Johnson SM (2011) The effects of leg length
discrepancy on gait and balance. Grad Progr Heal Rehabil Sci.

5. Sadeghi H, Allard P, Prince F, Labelle H (2000) Symmetry and limb dominance 
in able-bodied gait: a review. Gait Posture 12: 34-45.

6. Khamis S, Carmeli E (2018) The effect of simulated leg length discrepancy on 
lower limb biomechanics during gait. Gait Posture 61: 73-80.

7. Castellano BD (2011) Significance of minor leg length discrepancy. In: 
Mcglamry’s comprehensive textbook of foot and ankle surgery. Lippincott 
William & Wilkins, p: 178.

8. Sabharwal S, Kumar A (2008) Methods for assessing leg length discrepancy. 
Clin Orthop Relat Res 466: 2910-2922.

9. Sloot LH, van der Krogt MM, Harlaar J (2014) Self-paced versus fixed speed 
treadmill walking. Gait Posture 39: 478-484.

10.	Price C, Parker D, Nester C (2016) Validity and repeatability of three in-shoe 
pressure measurement systems. Gait & Posture 46: 69-74.



Citation: Márquez JS, Atri R, Siddiquee MR, Leung C, Bai O (2018) A Mobile, Smart Gait Assessment System for Asymmetry Detection Using 
Machine Learning-Based Classification. J Biomed Eng Med Devic 3: 135.  doi: 10.4172/2475-7586.1000135

Page 8 of 8

Volume 3 • Issue 2 • 1000135J Biomed Eng Med Devic, an open access journal 

lengthening for the treatment of limb-length discrepancy. J Bone Joint Surg Am 
81: 529-534.

28.	Brand RA, Yack HJ (1996) Effects of leg length discrepancies on the forces at 
the hip joint. Clin Orthop Relat Res, pp: 172-180.

29.	Song KM, Halliday SE, Little DG (1997) The effect of limb-length discrepancy 
on gait. J Bone Joint Surg Am 79: 1690-1698.

30.	Delacerda FG, Wikoff OD (1982) Effect of Lower Extremity Asymmetry on the
Kinematics of Gait. J Orthop Sport Phys Ther 3: 105-107.

31.	Assogba TF, Boulet S, Detrembleur C, Mahaudens P (2018) The effects of
real and artificial Leg Length Discrepancy on mechanical work and energy cost 
during the gait. Gait Posture 59: 147-151.

32.	Young RS, Andrew PD, Cummings GS (2000) Effect of simulating leg length 
inequality on pelvic torsion and trunk mobility. Gait Posture 11: 217-223.

33.	Cummings G, Scholz JP, Barnes K (1993) The effect of imposed leg length 
difference on pelvic bone symmetry. Spine 18: 368-373.

34.	Cooperstein RM, Lew Professor MD (2009) The relationship between pelvic
torsion and anatomical leg length inequality: a review of the literature. J Chiropr 
Med 8: 107-118.

35.	Pogorelc B, Bosnić Z, Gams M, Pogorelc B, Gams M, et al. (2011) Automatic 
recognition of gait-related health problems in the elderly using machine
learning. Multimedia Tools and Applications 58: 333-354.

36.	Begg R, Kamruzzaman J (2005) A machine learning approach for automated 
recognition of movement patterns using basic, kinetic and kinematic gait data. 
J Biomech 38: 401-418.

37.	Dietterich TG, Wettschereck D, Atkeson CG, Moore AW (1994) Memory-based 
methods for regression and classification. Adv Neural Inf Process Syst, pp: 
1165-1166.

38.	Atkeson CG, Santamaria JC (1997) A comparison of direct and model-based
reinforcement learning. In: Proceedings of International Conference on 
Robotics and Automation. IEEE, pp: 3557-3564.

39.	Dietterich TG (2000) Ensemble Methods in Machine Learning. Springer, Berlin, 
Heidelberg, pp: 1-15.

40.	Niculescu-Mizil A, Caruana R (2018) Obtaining calibrated probabilities from 
boosting.

41.	Wang Y, Zheng Y, Bai O, Wang Q, Liu D, et al. (2016) A multifunctional 
wireless body area sensors network with real time embedded data analysis. 
In: 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 
pp: 508-511.

42.	Mahar RK, Kirby RL, MacLeod DA (1985) Simulated leg-length discrepancy: its 
effect on mean center-of-pressure position and postural sway. Arch Phys Med 
Rehabil 66: 822-824.

43.	Orlin MN, McPoil TG (2000) Plantar pressure assessment. Phys Ther 80: 399-
409.

44.	Herzog W, Nigg BM, Read LJ, Olsson E (1989) Asymmetries in ground reaction 
force patterns in normal human gait. Med Sci Sports Exerc 21: 110-114.

45.	Song F, Mei D, Li H (2010) Feature selection based on linear discriminant
analysis. In: 2010 International conference on intelligent system design and 
engineering application. IEEE, p: 746-749.

46.	Izenman AJ (2008) Linear discriminant analysis. In: Modern multivariate 
statistical techniques: regression, classification, and manifold learning. New 
York, NY: Springer New York, p: 237-280.

47.	Mannini A, Trojaniello D, Cereatti A, Sabatini A (2016) A machine learning
framework for gait classification using inertial sensors: application to elderly, 
post-stroke and huntington’s disease patients. Sensors 16: 134.

48.	Nutakki C, Narayanan J, Anchuthengil AA, Nair B, Diwakar S (2017) 
Classifying gait features for stance and swing using machine learning. In: 2017 
International Conference on Advances in Computing, Communications and
Informatics (ICACCI). IEEE, pp: 545-548.

49.	James G (1998) Majority vote classifiers: theory and applications.

50.	Daugman J, Adler A, Schuckers S, Nandakumar K, Kennell LR, et al. (2009) 
Support Vector Machine. In: Encyclopedia of Biometrics. Springer US, Boston, 
MA, pp: 1303-1308.

51.	Figueiredo J, Santos CP, Moreno JC (2018) Automatic recognition of gait
patterns in human motor disorders using machine learning: A review. Med Eng 
Phys 53: 1-12.

52.	Lai DTH, Levinger P, Begg RK, Gilleard WL, Palaniswami M (2009) Automatic 
Recognition of Gait Patterns Exhibiting Patellofemoral Pain Syndrome Using a 
Support Vector Machine Approach. IEEE Trans Inf Technol Biomed 13: 810-
817.

53.	Yoo JH, Hwang D, Nixon MS (2005) Gender Classification in Human Gait 
Using Support Vector Machine. Springer, Berlin, Heidelberg, p: 138-145.

54.	Dietterich TG (2000) Ensemble Methods in Machine Learning. Springer, Berlin, 
Heidelberg, p: 1-15.

55.	Freund Y, Schapire RE (1999) A short introduction to boosting. J Japanese Soc 
Artif Intell 14: 771-180. 

56.	Torricelli D, Pilkar R, Yang Z, Reed KB, Ramakrishnan T, et al. (2018) 
Comparing Gait with Multiple Physical Asymmetries Using Consolidated
Metrics. Front Neurorobot 12: 2.

57.	Drover D, Howcroft J, Kofman J, Lemaire ED (2017) Faller classification in 
older adults using wearable sensors based on turn and straight-walking
accelerometer-based features. Sensors 17: 1321.

58.	Barton JG, Lees A (1997) An application of neural networks for distinguishing
gait patterns on the basis of hip-knee joint angle diagrams. Gait Posture 5: 
28-33.

59.	Mahmoud A, Abundo P, Basile L, Albensi C, Marasco M, et al. (2017) Functional 
leg length discrepancy between theories and reliable instrumental assessment: 
a study about newly invented NPoS system. Muscles Ligaments Tendons J 7: 
293-305.

60.	Sabzevari M, Martínez-Muñoz G, Suárez A (2018) Vote-boosting ensembles. 
Accessed on: 28 Mar 2018.

61.	Begg RK, Palaniswami M, Owen B (2005) Support vector machines for 
automated gait classification. IEEE Trans Biomed Eng 52: 828-838.




