
Volume 3 • Issue 3 • 1000123J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Dechev and Hendry, J Inform Tech Softw Eng 2013, 3:3
DOI; 10.4172/2165-7866.1000123

Research Article Open Access

A Macroscale Simulator for Exascale Software/Hardware Co-Design
Damian Dechev1,2 and Gilbert Hendry2

1Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL, USA
2Sandia National Laboratories, Livermore, CA, USA

Abstract
The next decade will see a rapid evolution of HPC node architectures as power and cooling constraints are limiting

increases in microprocessor clock speeds and constraining data movement. Future and current HPC applications will
have to change and adapt as node architectures evolve. The application of advanced exascale architecture simulators
will play a crucial role for the design and optimization of future data intensive applications. In this paper, we present
our imulation-based framework for analyzing the scalability and performance of massive interconnected networks.

*Corresponding author: Damian Dechev, Department of Electrical Engineering
and Computer Science, University of Central Florida, Orlando, FL, USA, E-mail:
dechev@eecs.ucf.edu

Received August 10, 2013; Accepted November 18, 2013; Published November
23, 2013

Citation: Dechev D, Hendry G (2013) A Macroscale Simulator for Exascale
Software/Hardware Co-Design. J Inform Tech Softw Eng 3: 123. doi:10.4172/2165-
7866.1000123

Copyright: © 2013 Dechev D, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Keywords: Exascale architecture simulator; Performance and
scalability modeling; Software/Hardware co-design

Introduction
Developers of HPC software must navigate a challenging

space of trade-offs with unforeseen effects on delivered application
performance. A major challenge is understanding the impact of various
design decisions before hardware, or even fully functional software, is
available to evaluate the design. In this work we resent the Structured
Simulation Toolkit’s macroscale simulation components (SST/-
macro) [1], our platform for studying and analyzing HPC application
performance at scale. SST/macro helps multiprocessor programming
in the following ways:

• Enhancing the effectiveness of architecture-specific
optimizations by avoiding the hazards of communication and
synchronization bottlenecks

• Adapting the applied programming model and motifs to better
facilitate the computational and communication patterns of
the application

• Evaluating the effectiveness and scalability of user applications
before deploying them on advanced hardware platforms
including heterogenous and exascale architectures and those
based on chips with no builtin hardware cache coherence

• Understanding performance problems of multiprocessor
programs with detailed information about the synchronization
calls that affect the application’s scalability and efficiency

• Validating the runtime behavior of multi-processor programs
by matching the simulation data, the dynamic profiling and
testing data, and the application’s specifications.

Event-Driven Macroscale Simulation
Figure 1 provides an overview of the design of the SST/-macro

simulator. The simulator makes use of lightweight application threads,
allowing it to maintain simultaneous task counts ranging into the
millions. SST/macro supports two execution modes: trace-driven
simulation mode and skeleton model-driven execution.

Trace-driven simulation

In the trace-driven simulation execution, an application is
executed and profiled in order to extract a wealth of information about
its execution pattern. The trace-driven simulation can provide our
infrastructure with the following information: average instruction mix,
memory access patterns, communication mechanisms and bottlenecks,
and the network utilization on a per-link basis. SST/macro supports

the following two trace file formats, both of which record execution
information by linking the target application with a library that uses
the PMPI [2] interface to intercept MPI calls.

• Open Trace Format (OTF): OTF is a trace format designed
for use with large-scale parallel platforms. OTF has three main
targets: openness, flexibility, and performance [3].

• DUMPI: which we designed as a custom trace format
distributed as a part of the SST/macro simulator. DUMPI’s
goal is to record more detailed information compared to OTF,
including the full signature of all MPI-1 and MPI-2 calls [4,5].
In addition, DUMPI trace files store information regarding
return values of MPI requests, which allows error checking and
MPI operation matching. DUMPI files also provide hardware
performance counter information using the Performance
Application Programming interface (PAPI) [4], which allows
information such as cache misses and floating point operations
to be logged.

The main advantage of trace file driven simulation is accuracy,
especially if the planned runtime system is known in detail. A
main difficulty is the fact that it requires the execution of the actual
application that could often be computationally intensive and have
a long run time. Moreover, trace file simulation is not capable of

Figure 1: SST/macro Simulation Framework.

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering

Volume 3 • Issue 3 • 1000123J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Dechev D, Hendry G (2013) A Macroscale Simulator for Exascale Software/Hardware Co-Design. J Inform Tech Softw Eng 3: 123.
doi:10.4172/2165-7866.1000123

Page 2 of 3

predicting performance on future hardware platforms, as the generated
trace files are specific to some features of the execution environment.

Skeleton model-driven simulation

While trace driven simulation can run applications on the largest
available machines and then analyze the collected traces, skeleton
model-driven simulation is required to scale simulations and interpolate
application behavior on future exascale machines to be designed. Here
the simulation is driven by skeleton applications, which are simplified
models of actual HPC programs with enough communication and
computation information to mimic the application’s behavior. One
method of constructing a skeleton model is to manually replace portions
of the code performing computations with system calls that instruct
the simulator to account for the time implicitly. Since the performance
models can be embedded in the skeleton application and intensive
calculations are not performed, the simulator requires significantly less
computational time than simulating the entire application. Skeleton
application simulation can also evaluate efficiency and scalability
at extremely different scales, which provides a powerful option for
performance prediction of non-existing super-scalar systems.

Communication models

The purpose of SST/macro’s communication component is to
study the complex interaction of the various software components and
the network. Recent growth of large-scale systems has made evaluation
of communication loads across complex networks vital. SST/macro is
capable of simulating and evaluating advanced network workload with
diverse topology and routing. A simple processor model is added to
provide timings for processor workload and data movement within each
node. The simulator currently supports torus, fat-free, hypercube, Clos,
and gamma topologies [6]. Moreover, general network frameworks
can be evaluated with network parameters such as bandwidth and
latency, and the modularity of the simulator makes defining new
topologies and routing protocols easy. These components enable us
to investigate interconnect design options such as choice and tuning
of topologies (high-dimensional meshes, fit-trees as opposed to fat-
trees); routing algorithms (wormhole vs dispersive routing, oblivious
vs. adaptive routing); and system parameter choices (e.g, router buffer
sizes, bandwidths and latencies). At the same time, we will be able to
quantify the benefits of new algorithms and algorithmic paradigms
such as alternatives to the infamous bulk-synchronous parallelism.
In addition, we will study how to decompose the main problem into
subproblems and how to map tasks to the processors.

Programming models

SST/macro is designed to support a variety of programming and
synchronization models. The most recent release of SST/macro [1]
provides full support for Pthreads and the Message Passing Interface
(MPI) [7]. MPI is the most common message passing library interface
specification for a distributed memory system and is widely applied in a
large number of scientific codes. In SST/macro, lightweight application
threads perform MPI operations (Figure 1). The simulator implements
a complete MPI which skeleton applications can use to emulate node
communication in a straightforward manner. SST/macro has been
used to test the performance impact of proposed extensions to the MPI
standard [8,4] and optimizations to mpiBLAST [9,10].

SST/macro Simulation Accuracy: We provide a brief overview
of our simulator validation study [4]. Figure 2a shows the result of
our validation studies, demonstrating that SST/macro’s predictions

are always within 10% of the observed runtimes. Figure 2b shows
the runtime performance of our simulator, demonstrating that the
simulator can easily simulate up to millions of processors, with its
performance bounded by cache size. In this study we have executed a
trivial MPI Ping-Pong test [10]. The MPI Ping- Pong is a communication
test between two hosts used to determine whether a particular host is
reachable across an IP network. Figure 2c shows how the simulator can
be used to understand how architectural features impact application
performance. A detailed discussion of these results is available in [4,5].

Applications

Exploring HPC Codes: Here we briefly mention three representative
HPC applications to demonstrate our performance modeling and
simulation process [5] and also outline a range of important application
requirements that will motivate future system designs. Our target
applications include: the Gyrokinetic Toroidal Code (GTC) [11,12], an
application developed for fusion simulations, including efficient ITER
designs; the Global Cloud Resolving Model (GCRM) [13], designed for
climate simulations at unprecedented resolutions; and the Materials
Science LS3DF [14] computation, which is applied to numerous
nanoscience simulations including next-generation solar cell design.
Full applications, especially those that are capable of testing the system
at very high concurrency and scale, have complicated interactions and
access patterns that are difficult to predict and understand without the
concrete evidence of a full application. Each application mentioned
here employs a different mathematical foundation for the solution of
the underlying physical process.

Figure 2: SST/macro simulator results showing (a) validation data with
simulated runtime plotted against observed runtime, (b) real time required to
simulate an MPI ping pong round trip, and (c) use of the simulator to study
machine topology and bandwidth affects on application runtime.

Volume 3 • Issue 3 • 1000123J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Dechev D, Hendry G (2013) A Macroscale Simulator for Exascale Software/Hardware Co-Design. J Inform Tech Softw Eng 3: 123.
doi:10.4172/2165-7866.1000123

Page 3 of 3

Compact applications

The Mantevo project [15] is an effort to provide open source
software packages for the analysis, prediction and improvement of
high performance computing applications. These packages consist of
mini-applications, mini-drivers, and application proxies. The mini-
applications are small, self-contained programs that embody essential
performance characteristics of certain key applications. The mini-
drivers are small programs that utilize performance impacting Trilinos
[16] packages. Application proxies are parameterizable programs that
can be calibrated to mimic the performance of a large-scale application.
The application space covered by the Mantevo software includes implicit
unstructured PDE applications, explicit dynamics (contact), molecular
dynamics, and circuit simulation. These applications provide wide
coverage in the HPC software design space. In this project we rely on
Mantevo to complement to the full applications and the computational
motifs. Because the Mantevo software packages are relatively small
compared to a full application (ranging in size from about 1000 to
10000 lines of code), it is simple to port the code to our SST/macro-
based simulation toolchain and experiment with code alterations [5].
Computational Motifs and Auto-Tuned Kernels: In addition to full
and compact application codes, we are also considering computational
motifs that capture computation and communication patterns for
a broad range of scientific methods. For these motifs we leverage
the work on succinct set of well-defined algorithms and numerical
methods [17] at a high level of abstraction. These benchmark codes
serve to broaden the space of architectural drivers to include virtually
all of the important access patterns and communication topologies
encountered in problems of interest to high end computing.

Conclusions and Future Work
The application of hardware/software co-design has been a feature

of embedded system designs for a long time. So far, hardware/software
co-design techniques have found little application in the field of high-
performance computing. The multi-core paradigm shift has left both
software engineers and computer architects with a lot of challenging
dilemmas. The application of hardware/software co-design for
HPC systems will allow for a bi-directional optimization of design
parameters where software specifications and behavior drive hardware
design decisions and hardware constraints are better understood and
accounted for in the implementation of effective application software.
The use of discrete event simulation tools provides the data and insights
to estimate the performance impact on an HPC applications when it is
subjected to certain architectural constraints. In this work we discussed
the design of a newly developed open-source macroscale simulator
(SST/macro). SST/macro provides the simulation abilities which can
play a crucial role for the effective design and implementation of large-
scale data intensive applications to be executed on the future multicore
hardware platforms. Such platforms could include a wide variety of
features including a heterogenous design of CPUs, GPUs, and even
FPGAs. In our future work we plan to implement components for
supporting additional programming styles such as the partitioned
global address space (PGAS) programming model [18], and non-
blocking synchronization [19]. Such extensions will address the needs
of applications and algorithms that increasingly rely on finegrained
parallelism such as lock-free synchronization [19,20] and strong scaling

while supporting fault resilience [21] to accommodate the massive
growth of explicit on-chip parallelism and constrained bandwidth
anticipated of future chip architectures.

References

1. Sandia Nationional Labs, 2011.

2. Mintchev S, Getov V (1997) PMPI: High-Level Message Passing in Fortran 77
and C. High-Performance Computing and Networking 1225: 601-614.

3. Kn¨upfer A, Brendel R, Brunst H, Mix H, Nagel W (2006) Introducing the Open
Trace Format (OTF). Lecture Notes in Computer Science 3992: 526-533.

4. Janssen C, Adalsteinsson H, Cranford S, Kenny J, Pinar A, et al. (2010) A
Simulator for Large-Scale Parallel Computer Architectures. Inter Jour of
Distributed Systems and Technologies 1: 57-73.

5. Janssen CL, Adalsteinsson H, Cranford S, Dechev D, Kenny JP, et al.
(2010) Exascale Co-design with Sandia’s Structural Simulation Toolkit
(SST). Proceedings of 1st International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computing Systems
(PMBS 2010), Supercomputing (SC 2010).

6. Dally W, Towles B (2003) Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers Inc San Francisco, CA, USA.

7. MPI (2009) MPI (Message Passing Interface) standards documents, errata,
and archives of the MPI Forum.

8. Dakshinamurthy A, Dechev D (2011) SRC: Automatic Extraction of SST/macro
Skeleton Models. Proceedings of the 25th ACM International Conference on
Supercomputing.

9. Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment
search tool. Journal of Molecular Biology 215: 403-410.

10. Ahn TH, Dechev D, Lin H, Adalsteinsson H, Janssen C (2011) Evaluating
Performance Optimizations of Large- Scale Genomic Sequence Search
Applications Using SST/- macro. Proceedings of the 1st International
Conference on Simulation and Modeling Methodologies, Technologies and
Applications.

11. Lin Z, Hahm T, Lee W, Tang W, White R (1998) Turbulent transport reduction
by zonal flows: Massively parallel simulations. Science 281: 1835-1837.

12. Ethier S, Tang W, Lin Z (2005) Gyrokinetic particle-in-cell simulations of
plasma microturbulence on advanced computing platforms. Journal of Physics:
Conference Series 16: 1-15.

13. Randall DA, Ringler TD, Heikes RP, Jones P, Baumgardner J (2002) Climate
Modeling with Spherical Geodesic grids. Computing in Science & Engineering.

14. Wang W, Lee B, Shan H, Zhao Z, Meza J, et al. (2009) Linear scaling 3D
fragment method for large scale electronic structure calculations. Proc. ACM/
IEEE Conf. on Supercomputing (SC), Portland, OR, USA.

15. Sandia Nationional Labs. Mantevo, 2011.

16. Sandia Nationional Labs. Trilinos, 2011.

17. Asanovic K, Bodik R, Catanzaro BC, Gebis JJ, Husbands P, et al. (2006) The
Landscape of Parallel Computing Research: A View from Berkeley. EECS
Department, University of California, USA.

18. Pirkelbauer P, Liao C, Panas T, Quinlan D (2011) Runtime Detection of C-Style
Errors in UPC Code. Proceedings of the Fifth Conference on Partitioned Global
Address Space Programming Models.

19. Dechev D, Stroustrup B (2009) Scalable Nonblocking Concurrent Objects
for Mission Critical Code. Proceedings of the ACM SIGPLAN conference on
Objectoriented programing, systems, languages, and applications.

20. Dechev D, Pirkelbauer P, Stroustrup B (2006) Lock-Free Dynamically Resizable
Arrays. Lecture Notes in Computer Science 4305: 142-156.

21. Minnich RG, Janssen CL, Krishnamoorthy S, Marquez A, Gokhale M, et al
(2011) Fault oblivious exascale whitepaper. Proceedings of the 1st International
Workshop on Runtime and Operating Systems for Supercomputers, ROSS ’11,
New York, NY, USA.

http://link.springer.com/chapter/10.1007%2FBFb0031632
http://link.springer.com/chapter/10.1007%2FBFb0031632
http://link.springer.com/chapter/10.1007%2F11758525_71
http://link.springer.com/chapter/10.1007%2F11758525_71
http://www.sandia.gov/~apinar/papers/macroscale_simulator_preprint.pdf
http://www.sandia.gov/~apinar/papers/macroscale_simulator_preprint.pdf
http://www.sandia.gov/~apinar/papers/macroscale_simulator_preprint.pdf
http://www.mantevo.org/SST-SAND2010-5718P.pdf
http://www.mantevo.org/SST-SAND2010-5718P.pdf
http://www.mantevo.org/SST-SAND2010-5718P.pdf
http://www.mantevo.org/SST-SAND2010-5718P.pdf
http://www.mantevo.org/SST-SAND2010-5718P.pdf
http://www.amazon.com/Principles-Practices-Interconnection-Networks-Architecture/dp/0122007514
http://www.amazon.com/Principles-Practices-Interconnection-Networks-Architecture/dp/0122007514
http://dl.acm.org/citation.cfm?id=1995965&dl=ACM&coll=DL&CFID=379949577&CFTOKEN=56133014
http://dl.acm.org/citation.cfm?id=1995965&dl=ACM&coll=DL&CFID=379949577&CFTOKEN=56133014
http://dl.acm.org/citation.cfm?id=1995965&dl=ACM&coll=DL&CFID=379949577&CFTOKEN=56133014
http://www.ncbi.nlm.nih.gov/pubmed/2231712
http://www.ncbi.nlm.nih.gov/pubmed/2231712
http://www.researchgate.net/publication/221274446_Evaluating_Performance_Optimizations_of_Large-scale_Genomic_Sequence_Search_Applications_using_SSTmacro
http://www.researchgate.net/publication/221274446_Evaluating_Performance_Optimizations_of_Large-scale_Genomic_Sequence_Search_Applications_using_SSTmacro
http://www.researchgate.net/publication/221274446_Evaluating_Performance_Optimizations_of_Large-scale_Genomic_Sequence_Search_Applications_using_SSTmacro
http://www.researchgate.net/publication/221274446_Evaluating_Performance_Optimizations_of_Large-scale_Genomic_Sequence_Search_Applications_using_SSTmacro
http://www.researchgate.net/publication/221274446_Evaluating_Performance_Optimizations_of_Large-scale_Genomic_Sequence_Search_Applications_using_SSTmacro
http://www.sciencemag.org/content/281/5384/1835.short
http://www.sciencemag.org/content/281/5384/1835.short
http://phoenix.ps.uci.edu/zlin/bib/ethier05p.pdf
http://phoenix.ps.uci.edu/zlin/bib/ethier05p.pdf
http://phoenix.ps.uci.edu/zlin/bib/ethier05p.pdf
http://kiwi.atmos.colostate.edu/pubs/CISE.pdf
http://kiwi.atmos.colostate.edu/pubs/CISE.pdf
http://www.davidhbailey.com/dhbpapers/ls3df-main.pdf
http://www.davidhbailey.com/dhbpapers/ls3df-main.pdf
http://www.davidhbailey.com/dhbpapers/ls3df-main.pdf
https://software.sandia.gov/mantevo/
http://trilinos.sandia.gov
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://rosecompiler.org/ROSE_ResearchPapers/2011-C-style-errors-in-UPC-PGAS.pdf
http://rosecompiler.org/ROSE_ResearchPapers/2011-C-style-errors-in-UPC-PGAS.pdf
http://rosecompiler.org/ROSE_ResearchPapers/2011-C-style-errors-in-UPC-PGAS.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.159.5654
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.159.5654
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.159.5654
http://www.stroustrup.com/lock-free-vector.pdf
http://www.stroustrup.com/lock-free-vector.pdf
http://dl.acm.org/citation.cfm?id=1988800
http://dl.acm.org/citation.cfm?id=1988800
http://dl.acm.org/citation.cfm?id=1988800
http://dl.acm.org/citation.cfm?id=1988800

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Event-Driven Macroscale Simulation
	Trace-driven simulation
	Skeleton model-driven simulation
	Communication models
	Programming models

	Applications
	Compact applications

	Conclusions and Future Work
	Figure 1
	Figure 2
	References

