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Abstract
The next decade will see a rapid evolution of HPC node architectures as power and cooling constraints are limiting 

increases in microprocessor clock speeds and constraining data movement. Future and current HPC applications will 
have to change and adapt as node architectures evolve. The application of advanced exascale architecture simulators 
will play a crucial role for the design and optimization of future data intensive applications. In this paper, we present 
our imulation-based framework for analyzing the scalability and performance of massive interconnected networks. 
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Introduction
Developers of HPC software must navigate a challenging 

space of trade-offs with unforeseen effects on delivered application 
performance. A major challenge is understanding the impact of various 
design decisions before hardware, or even fully functional software, is 
available to evaluate the design. In this work we resent the Structured 
Simulation Toolkit’s macroscale simulation components (SST/-
macro) [1], our platform for studying and analyzing HPC application 
performance at scale. SST/macro helps multiprocessor programming 
in the following ways: 

• Enhancing the effectiveness of architecture-specific
optimizations by avoiding the hazards of communication and
synchronization bottlenecks

• Adapting the applied programming model and motifs to better 
facilitate the computational and communication patterns of
the application

• Evaluating the effectiveness and scalability of user applications
before deploying them on advanced hardware platforms
including heterogenous and exascale architectures and those
based on chips with no builtin hardware cache coherence

• Understanding performance problems of multiprocessor
programs with detailed information about the synchronization 
calls that affect the application’s scalability and efficiency

• Validating the runtime behavior of multi-processor programs
by matching the simulation data, the dynamic profiling and
testing data, and the application’s specifications.

Event-Driven Macroscale Simulation
Figure 1 provides an overview of the design of the SST/-macro 

simulator. The simulator makes use of lightweight application threads, 
allowing it to maintain simultaneous task counts ranging into the 
millions. SST/macro supports two execution modes: trace-driven 
simulation mode and skeleton model-driven execution.

Trace-driven simulation

In the trace-driven simulation execution, an application is 
executed and profiled in order to extract a wealth of information about 
its execution pattern. The trace-driven simulation can provide our 
infrastructure with the following information: average instruction mix, 
memory access patterns, communication mechanisms and bottlenecks, 
and the network utilization on a per-link basis. SST/macro supports 

the following two trace file formats, both of which record execution 
information by linking the target application with a library that uses 
the PMPI [2] interface to intercept MPI calls.

• Open Trace Format (OTF): OTF is a trace format designed
for use with large-scale parallel platforms. OTF has three main
targets: openness, flexibility, and performance [3].

• DUMPI: which we designed as a custom trace format
distributed as a part of the SST/macro simulator. DUMPI’s
goal is to record more detailed information compared to OTF,
including the full signature of all MPI-1 and MPI-2 calls [4,5].
In addition, DUMPI trace files store information regarding
return values of MPI requests, which allows error checking and 
MPI operation matching. DUMPI files also provide hardware
performance counter information using the Performance
Application Programming interface (PAPI) [4], which allows
information such as cache misses and floating point operations 
to be logged.

The main advantage of trace file driven simulation is accuracy, 
especially if the planned runtime system is known in detail. A 
main difficulty is the fact that it requires the execution of the actual 
application that could often be computationally intensive and have 
a long run time. Moreover, trace file simulation is not capable of 

Figure 1: SST/macro Simulation Framework.

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering



Volume 3 • Issue 3 • 1000123J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Dechev D, Hendry G (2013) A Macroscale Simulator for Exascale Software/Hardware Co-Design. J Inform Tech Softw Eng 3: 123. 
doi:10.4172/2165-7866.1000123

Page 2 of 3

predicting performance on future hardware platforms, as the generated 
trace files are specific to some features of the execution environment.

Skeleton model-driven simulation

While trace driven simulation can run applications on the largest 
available machines and then analyze the collected traces, skeleton 
model-driven simulation is required to scale simulations and interpolate 
application behavior on future exascale machines to be designed. Here 
the simulation is driven by skeleton applications, which are simplified 
models of actual HPC programs with enough communication and 
computation information to mimic the application’s behavior. One 
method of constructing a skeleton model is to manually replace portions 
of the code performing computations with system calls that instruct 
the simulator to account for the time implicitly. Since the performance 
models can be embedded in the skeleton application and intensive 
calculations are not performed, the simulator requires significantly less 
computational time than simulating the entire application. Skeleton 
application simulation can also evaluate efficiency and scalability 
at extremely different scales, which provides a powerful option for 
performance prediction of non-existing super-scalar systems. 

Communication models

The purpose of SST/macro’s communication component is to 
study the complex interaction of the various software components and 
the network. Recent growth of large-scale systems has made evaluation 
of communication loads across complex networks vital. SST/macro is 
capable of simulating and evaluating advanced network workload with 
diverse topology and routing. A simple processor model is added to 
provide timings for processor workload and data movement within each 
node. The simulator currently supports torus, fat-free, hypercube, Clos, 
and gamma topologies [6]. Moreover, general network frameworks 
can be evaluated with network parameters such as bandwidth and 
latency, and the modularity of the simulator makes defining new 
topologies and routing protocols easy. These components enable us 
to investigate interconnect design options such as choice and tuning 
of topologies (high-dimensional meshes, fit-trees as opposed to fat-
trees); routing algorithms (wormhole vs dispersive routing, oblivious 
vs. adaptive routing); and system parameter choices (e.g, router buffer 
sizes, bandwidths and latencies). At the same time, we will be able to 
quantify the benefits of new algorithms and algorithmic paradigms 
such as alternatives to the infamous bulk-synchronous parallelism. 
In addition, we will study how to decompose the main problem into 
subproblems and how to map tasks to the processors.

Programming models

SST/macro is designed to support a variety of programming and 
synchronization models. The most recent release of SST/macro [1] 
provides full support for Pthreads and the Message Passing Interface 
(MPI) [7]. MPI is the most common message passing library interface 
specification for a distributed memory system and is widely applied in a 
large number of scientific codes. In SST/macro, lightweight application 
threads perform MPI operations (Figure 1). The simulator implements 
a complete MPI which skeleton applications can use to emulate node 
communication in a straightforward manner. SST/macro has been 
used to test the performance impact of proposed extensions to the MPI 
standard [8,4] and optimizations to mpiBLAST [9,10].

SST/macro Simulation Accuracy: We provide a brief overview 
of our simulator validation study [4]. Figure 2a shows the result of 
our validation studies, demonstrating that SST/macro’s predictions 

are always within 10% of the observed runtimes. Figure 2b shows 
the runtime performance of our simulator, demonstrating that the 
simulator can easily simulate up to millions of processors, with its 
performance bounded by cache size. In this study we have executed a 
trivial MPI Ping-Pong test [10]. The MPI Ping- Pong is a communication 
test between two hosts used to determine whether a particular host is 
reachable across an IP network. Figure 2c shows how the simulator can 
be used to understand how architectural features impact application 
performance. A detailed discussion of these results is available in [4,5].

Applications

Exploring HPC Codes: Here we briefly mention three representative 
HPC applications to demonstrate our performance modeling and 
simulation process [5] and also outline a range of important application 
requirements that will motivate future system designs. Our target 
applications include: the Gyrokinetic Toroidal Code (GTC) [11,12], an 
application developed for fusion simulations, including efficient ITER 
designs; the Global Cloud Resolving Model (GCRM) [13], designed for 
climate simulations at unprecedented resolutions; and the Materials 
Science LS3DF [14] computation, which is applied to numerous 
nanoscience simulations including next-generation solar cell design. 
Full applications, especially those that are capable of testing the system 
at very high concurrency and scale, have complicated interactions and 
access patterns that are difficult to predict and understand without the 
concrete evidence of a full application. Each application mentioned 
here employs a different mathematical foundation for the solution of 
the underlying physical process.

Figure 2: SST/macro simulator results showing (a) validation data with 
simulated runtime plotted against observed runtime, (b) real time required to 
simulate an MPI ping pong round trip, and (c) use of the simulator to study 
machine topology and bandwidth affects on application runtime.
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Compact applications

The Mantevo project [15] is an effort to provide open source 
software packages for the analysis, prediction and improvement of 
high performance computing applications. These packages consist of 
mini-applications, mini-drivers, and application proxies. The mini-
applications are small, self-contained programs that embody essential 
performance characteristics of certain key applications. The mini-
drivers are small programs that utilize performance impacting Trilinos 
[16] packages. Application proxies are parameterizable programs that
can be calibrated to mimic the performance of a large-scale application. 
The application space covered by the Mantevo software includes implicit 
unstructured PDE applications, explicit dynamics (contact), molecular 
dynamics, and circuit simulation. These applications provide wide
coverage in the HPC software design space. In this project we rely on
Mantevo to complement to the full applications and the computational 
motifs. Because the Mantevo software packages are relatively small
compared to a full application (ranging in size from about 1000 to
10000 lines of code), it is simple to port the code to our SST/macro-
based simulation toolchain and experiment with code alterations [5].
Computational Motifs and Auto-Tuned Kernels: In addition to full
and compact application codes, we are also considering computational 
motifs that capture computation and communication patterns for
a broad range of scientific methods. For these motifs we leverage
the work on succinct set of well-defined algorithms and numerical
methods [17] at a high level of abstraction. These benchmark codes
serve to broaden the space of architectural drivers to include virtually
all of the important access patterns and communication topologies
encountered in problems of interest to high end computing.

Conclusions and Future Work
The application of hardware/software co-design has been a feature 

of embedded system designs for a long time. So far, hardware/software 
co-design techniques have found little application in the field of high-
performance computing. The multi-core paradigm shift has left both 
software engineers and computer architects with a lot of challenging 
dilemmas. The application of hardware/software co-design for 
HPC systems will allow for a bi-directional optimization of design 
parameters where software specifications and behavior drive hardware 
design decisions and hardware constraints are better understood and 
accounted for in the implementation of effective application software. 
The use of discrete event simulation tools provides the data and insights 
to estimate the performance impact on an HPC applications when it is 
subjected to certain architectural constraints. In this work we discussed 
the design of a newly developed open-source macroscale simulator 
(SST/macro). SST/macro provides the simulation abilities which can 
play a crucial role for the effective design and implementation of large-
scale data intensive applications to be executed on the future multicore 
hardware platforms. Such platforms could include a wide variety of 
features including a heterogenous design of CPUs, GPUs, and even 
FPGAs. In our future work we plan to implement components for 
supporting additional programming styles such as the partitioned 
global address space (PGAS) programming model [18], and non-
blocking synchronization [19]. Such extensions will address the needs 
of applications and algorithms that increasingly rely on finegrained 
parallelism such as lock-free synchronization [19,20] and strong scaling 

while supporting fault resilience [21] to accommodate the massive 
growth of explicit on-chip parallelism and constrained bandwidth 
anticipated of future chip architectures.
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