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Introduction
In recent years, the use of Unmanned Aerial Vehicles (UAVs) has 

increased significantly as these vehicles provide cost-effective and safe 
alternatives to manned flights in several civil and military applications. 
These robotic aircraft can employ a variety of sensors, as well as multi-
sensor data fusion algorithms, to provide autonomy to the platform in 
the accomplishment of mission- and safety-critical tasks. UAVs are 
characterized by higher manoeuvr ability, reduced cost, longer 
endurance and less risk to human life compared to manned systems. 
One of the most important concepts is to use a multi-sensor integrated 
system to cope with the requirements of long/medium range navigation 
and landing. This can reduce cost, weight/volume and support 
requirements and, with the appropriate sensors and integration 
architecture, give increased accuracy and integrity of the overall system. 
The best candidates for such integration are indeed satellite navigation 
receivers and inertial sensors. In recent years, computer vision and 
Vision-Based Navigation (VBN) systems have started to be applied to 
UAVs.VBN can provide a self-contained autonomous navigation 
solution and can be used as an alternative (or an addition) to the 
traditional sensors (GPS, INS and integrated GPS/INS). The required 
information to perform autonomous navigation can be obtained from 
cameras which are compact and lightweight sensors. This is particularly 
attractive in UAV platforms, where weight and volume are tightly 
constrained. Sinopoli et al. [1] used a model-based approach to develop 

a system which processes image sequences from visual sensors fused 
with readings from GPS/INS to update a coarse, inaccurate 3D model 
of the surroundings. Digital Elevation Maps (DEM) was used to build 
the 3D model of the environment. Occupancy Grid Mapping was used 
in this study, in which the maps were divided into cells. Each cell had a 
probability value of an obstacle being present associated with it. Using 
this ‘risk map’ and the images from the visual sensors, the UAV was able 
to update its stored virtual map. Shortest path optimization techniques 
based on the Djikstra algorithm and Dynamic Programming were then 
used to perform obstacle avoidance and online computation of the 
shortest trajectory to the destination. Se et al. [2] proposed a system 
which deals with vision-based SLAM using a trinocular stereo system. 
In this study, Scale-Invariant Feature Transform (SIFT) was used for 
tracking natural landmarks and to build the 3D maps. The algorithm 
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Abstract
A low cost navigation system based on Vision Based Navigation (VBN) and other avionics sensors is presented, 

which is designed for small size Unmanned Aerial Vehicle (UAV) applications. The main objective of our research 
is to design a compact, lightweight and relatively inexpensive system capable of providing the required navigation 
performance in all phases of flight of a small UAV, with a special focus on precision approach and landing, where 
Vision Based Navigation (VBN) techniques can be fully exploited in a multisensory integrated architecture. Various 
existing techniques for VBN are compared and the Appearance-based Navigation (ABN) approach is selected for 
implementation. Feature extraction and optical flow techniques are employed to estimate flight parameters such as 
roll angle, pitch angle, deviation from the runway and body rates. Additionally, we address the possible synergies 
between VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU (Micro-Electromechanical System 
Inertial Measurement Unit) sensors and also the use of Aircraft Dynamics Models (ADMs) to provide additional 
information suitable to compensate for the shortcomings of VBN and MEMS-IMU sensors in high-dynamics attitude 
determination tasks. An Extended Kalman Filter (EKF) is developed to fuse the information provided by the different 
sensors and to provide estimates of position, velocity and attitude of the UAV platform in real-time. Two different 
integrated navigation system architectures are implemented. The first uses VBN at 20 Hz and GPS at 1 Hz to 
augment the MEMS-IMU running at 100 Hz. The second mode also includes the ADM (computations performed at 
100 Hz) to provide augmentation of the attitude channel. Simulation of these two modes is performed in a significant 
portion of the AEROSONDE UAV operational flight envelope and performing a variety of representative manoeuvres 
(i.e., straight climb, level turning, turning descent and climb, straight descent, etc.). Simulation of the first integrated 
navigation system architecture (VBN/IMU/GPS) shows that the integrated system can reach position, velocity and 
attitude accuracies compatible with CAT-II precision approach requirements. Simulation of the second system 
architecture (VBN/IMU/GPS/ADM) also shows promising results since the achieved attitude accuracy is higher using 
the ADM/VBS/IMU than using VBS/IMU only. However, due to rapid divergence of the ADM virtual sensor, there is a 
need for frequent re-initialisation of the ADM data module, which is strongly dependent on the UAV flight dynamics 
and the specific manoeuvring transitions performed. 
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built submaps from multiple frames which were then merged together. 
The SIFT features detected in the current frame were matched to the 
pre-built database map in order to obtain the location of the vehicle. 
Stereo vision-based navigation systems were proposed by various 
authors including Cui et al. [3] and Matsumoto et al. [4] proposed a 
representation of the visual route taken by robots in appearance-based 
navigation. This approach was called the View-Sequenced Route 
Representation (VSRR) and was a sequence of images memorized in 
the recording run along the required route. The visual route connected 
the initial position and destination via a set of images. This visual route 
was used for localization and guidance in the autonomous run. Pattern 
recognition was achieved by matching the features detected in the 
current view of the camera with the stored images. Criteria for image 
capture during the learning stage were given in the study. The visual 
route was learnt while the robot was manually guided along the required 
trajectory. A matching error between the previous stored image and 
current view was used to control the capture of the next key image. The 
current view was captured and saved as the next key image when a pre-
set error threshold was exceeded. Localization was carried out at the 
start of the autonomous run by comparing the current view with the 
saved visual route images. The key image with the greatest similarity to 
the current view represented the start of the visual route. The location 
of the robot depended purely on the key image used and no assumption 
was made of its location in 3D space. During the autonomous run, the 
matching error between the current view and key images was monitored 
in order to identify which image should be used for guidance. The robot 
was controlled so as to move from one image location to another and 
finally reach its destination. This ‘teach-and-replay’ approach was 
adopted by Courbon et al. [5,6], Chen et al. [7] and Remazeilles et al. 
[8]. In Courbon et al. [5,6], a single camera and natural landmarks were 
used to navigate a quadrotor UAV along the visual route. The key 
images were considered as waypoints to be followed in sensor space. 
Zero Normalized Cross Correlation was used for feature matching 
between the current view and the key images. A control system using 
the dynamic model of the UAV was developed. Its main task was to 
reduce the position error between the current view and key image to 
zero and to stabilize and control the UAV. Vision algorithms to measure 
the attitude of a UAV using the horizon and runway were presented by 
Xinhua et al. [9] and Dusha et al. [10]. The horizon is used by human 
pilots to control the pitch and roll of the aircraft while operating under 
visual flying rules. A similar concept is used by computer vision to 
provide an intuitive means of determining the attitude of an aircraft. 
This process is called Horizon-Based Attitude Estimation (HBAE). In 
[9], grayscale images were used for image processing. The horizon was 
assumed to be a straight line and appeared as an edge in the image. 
Texture energy method was used to detect it and this was used to 
compute the bank and pitch angle of the UAV. The position of the UAV 
with respect to the runway was found by computing the angles of the 
runway boundary lines. A Canny Edge detector was applied to part of 
the image below the horizon. The gradient of the edges was computed 
using the pixel coordinates which gave a rough indication of where the 
UAV was situated with respect to the runway. Dusha et al. [10] used a 
similar approach to develop algorithms to compute the attitude and 
attitude rates. A Sobel edge detector was applied to each channel of the 
RGB image. The three channels were then combined and Hough 
transform was used to detect the horizon. In this research, it was 
assumed that the camera frame and the body frames were coincidental 
and equations were developed so as to calculate the pitch and roll angle. 
The angular rates of the UAV were derived using optical flow of the 
horizon. Optical flow gives us additional information of the states of the 
UAV and is dependent on the angular rates, velocity and the distance of 

the detected features. During this research, it was observed that the 
image processing frontend was susceptible to false detection of the 
horizon if any other strong edges were present in the image. Therefore, 
an Extended Kalman Filter (EKF) was implemented to filter out these 
incorrect results. The performance of the algorithms was tested via test 
flights with a small UAV and a Cessna 172. Results of the test flight with 
the UAV showed an error in the calculated pitch and roll with standard 
deviations of 0.42 and 0.71 degrees respectively. Moving forward from 
these results, in our research we designed and tested a new VBN sensor 
specifically tailored for approach/landing applications which, in 
addition to horizon detection and image-flow, also employed runway 
features extraction during the approach phase. Additionally, various 
candidates were considered for integration with the VBN sensor, 
including Global Navigation Satellite Systems (GNSS) and Micro 
Electro Mechanical Systems (MEMS) based Inertial Measurement 
Units (IMUs). MEMS-IMUs are low-cost and low-volume/weight 
sensors particularly well suited for small/medium size UAV applications. 
However, their integration represent a challenge, which need to be 
addressed either by finding improvements to the existing analytical 
methods or by developing novel algorithmic approaches that 
counterbalance the use of less accurate inertial sensors. In line with the 
above discussions, the main objective of our research is to develop a 
low-cost and low-weight/volume Navigation and Guidance System 
(NGS) based on VBN and other low-cost and low-weight/volume 
sensors, capable of providing the required level of performance in all 
flight phases of a small/medium size UAV, with a special focus on 
precision approach and landing (i.e., the most demanding and 
potentially safety-critical flight phase), where VBN techniques can be 
fully exploited in a multisensory integrated architecture. The NGS is 
composed by a Multisensor Integrated Navigation System (MINS) 
using an Extended Kalman Filter (EKF) and an existing controller that 
employs Fuzzy Logic and Proportional-Integral-Differential (PID) 
technology.

VBN Sensor Design, Development and Test
As discussed above, VBN techniques use optical sensors (visual or 

infrared cameras) to extract visual features from images which are then 
used for localization in the surrounding environment. Cameras have 
evolved as attractive sensors as they help design economically viable 
systems with simpler hardware and software components. Computer 
vision has played an important role in the development of UAVs [11]. 
Considerable work has been made over the past decade in the area of 
vision-based techniques for navigation and control [9]. UAV vision-
based systems have been developed for various applications ranging 
from autonomous landing to obstacle avoidance. Other applications 
looked into the possible augmentation INS and GPS/INS by using 
VBN measurements [12]. As discussed above, several VBN sensors and 
techniques have been developed. However, the vast majority of VBN 
sensor schemes fall into one of the following two categories [13]: Model-
based Approach (MBA) and Appearance-based Approach (ABA). MBA 
uses feature tracking in images and create a 3D- model of the workspace 
in which robots or UAV operates [14]. The 3D maps are created in 
an offline process using a priori information of the environment. 
Localisation is carried out using feature matching between the current 
view of the camera and the stored 3D model. The orientation of the 
robot is found from 3D-2D correspondence. MBA has been extensively 
researched in the past and is the most common technique currently 
implemented for vision-based navigation. However, the accuracy of 
this method is dependent on the features used for tracking, robustness 
of the feature descriptors and the algorithms used for matching and 
reconstruction. The reconstruction in turn relies on proper camera 
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calibration and sensor noise. Knowledge of surroundings so as to 
develop the 3D models is also required prior to implementation 
which may not be case in most situations.ABA algorithms eliminate 
the need for a metric model as they work directly in the sensor space. 
This approach utilizes the appearance of the whole scene in the image, 
contrary to model-based approach which uses distinct objects such as 
landmarks or edges [4]. The environment is represented in the form 
of key images taken at various locations using the visual sensors. This 
continuous set of images describes the path to be followed by the robot. 
The images are captured while manually guiding the robot through the 
workspace. In this approach, localisation is carried out by finding the 
key image with the most similarity to the current view. The robot is 
controlled by either coding the action required to move from one key 
image to another or by a more robust approach using visual servoing 
[8,15]. The ABA approach is relatively new and has gained active 
interest. The modelling of the surrounding using a set of key images is 
more straightforward to implement compared to 3D modelling. A major 
drawback of this method is its limited applicability. The robot assumes 
that the key image database for a particular workspace is already stored 
in its memory. Therefore, the key images need to be recaptured each 
time the robot moves to a new workspace. It is limited to work in the 
explored regions which have been visualised during the learning stage 
[16]. The ABA approach has a disadvantage in requiring a large amount 
of memory to store the images and is computationally more costly than 
MBA. However, due to improvements in computer technology, this 
technique has become a viable solution in many application areas. We 

selected the ABA approach for the design of our VBN sensor system.

Learning stage

The first step required for appearance based navigation is the 
learning stage. During this stage, a video is recorded using the on-
board camera while guiding the aircraft manually during the landing 
phase. The recorded video is composed of a series of frames which 
form the visual route for landing. This series of frames is essentially 
a set of images connecting the initial and target location images. The 
key frames are first sampled and the selected images are stored in the 
memory to be used for guidance during autonomous landing of the 
aircraft. During the learning stage, the UAV is flown manually meeting 
the Required Navigation Performance (RNP) requirements of precision 
approach and landing. If available, Instrument Landing System (ILS) 
can also be used for guidance. It should be noted that the visual route 
captured while landing on a runway, can only be used for that particular 
runway. If the UAV needs to land at multiple runways according to its 
mission, the visual route for all the runways is required to be stored in 
the memory. The following two methods can be employed for image 
capture during the learning stage.

Method 1: Frames are captured from the video input at fixed time 
intervals. The key frames are selected manually in this case.

Method 2: Frames are captured using a matching difference 
threshold [4]. This matching difference threshold is defined in number 
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of pixels and can be obtained by tracking the features in the current 
view and the previously stored key image. The key images can then be 
selected based on the threshold and stored in the memory.

The algorithm starts by taking an image at the starting point. Let 
this image be Mi captured at location i. As the aircraft moves forward, 
the difference between the current view (V) and the image Mi increases. 
This difference keeps increasing until it reaches the set threshold value 
(x). At this point, a new image Mi+1 is taken (replacing the previous 
image Mi) and the process are repeated until the aircraft reaches its 
destination. The learning stage process is summarized in figure 1a.

Localisation

Localization is a process which determines the current location of 
the aircraft at the start of autonomous run. This process identifies the 
key image which is the closest match to the current view. The current 
view of the aircraft is compared with a certain number of images, 
preferably the ones at the start of the visual route. The key image with 
the least matching difference is considered to be the start of the visual 
route to be followed by the aircraft. At the start of the autonomous run, 
the aircraft is approximately at the starting position of the visual route. 
The current view, captured from the on-board camera is compared with 
a set of images (stored previously in the memory during the learning 
stage) in order to find the location of aircraft with respect to the visual 
route. The key image with the least matching difference with the current 
view is considered to be the location of the aircraft and marks the start 
of the visual route to be followed. The process is summarized in figure 
1b. 

In this example, the number of images to be compared (X) is taken 
as 20. First, the algorithm loads the current view (V) and the first key 
frame (Mi). Then the difference between the current view and the 
current key frame is computed. The algorithm then loads the next key 

frame Mi+1 and again computes the difference with the current view. If 
this difference is less than the previous difference, Mi+1 replaces Mi, and 
the process is repeated again. Otherwise, Mi is considered as the current 
location of the aircraft.

Autonomous run

During the autonomous run phase, the aircraft follows the visual 
route (previously stored in memory during the learning stage) from 
the image identified as the current location of the aircraft during 
localization. The set of key images stored as the visual route can be 
considered as the target waypoints for the aircraft in sensor space. The 
current view is compared to the key images so as to perform visual 
servoing. The approach followed to identify the key image to be used for 
visual servoing, is describes as follows. Let Mj be the current key frame, 
i.e. image with the least matching difference with the current view. 
During the autonomous run, the current key image and the next key 
image (Mj+1) are loaded. The matching differences of the current view V 
with Mj and Mj+1 (which are DMj,V and DMj+1,V respectively) are tracked. 
When the matching difference DMj,V exceeds DMj+1,V, Mj+1 is taken as 
the current key image replacing Mj and the next key image is loaded 
as Mj+1. This same process keeps repeating until the aircraft reaches 
its destination, that is the final key frame. Figure 2a summarises the 
process of autonomous run in the form of a flow chart while the change 
in matching difference for different key frames during autonomous run 
is presented in figure 2b.

The proposed vision based navigation process is depicted in figure 
3. The key frames represent the visual route the aircraft requires to 
follow. 

The figure 4 shows that the key frame 2 is identified as the starting 
point of the visual route during the localization process. The onboard 
computer tracks the matching difference between current view and the 
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second and third key frames until the difference for key frame 2 and the 
current view exceeds the difference of key frame 3 and the current view. 
At this stage, key image 3 is used to control the UAV and the matching 
differences between key frames 3, 4 and the current view are monitored. 
This process is repeated until the UAV reaches its destination. To 
capture the outside view, a monochrome Flea camera from Point Grey 
Research was used. The main specification of the camera and lenses are 
listed in table 1.

This camera was also used in a previous study on stereo vision [17] 
and was selected for this project. The Flea camera is a pinhole Charged 
Coupled Device (CCD) camera with a maximum image resolution of 
1024×768 pixels. It is capable of recording videos at a maximum rate of 
30 fps. An IEEE 1394 connection was used to interface the camera and 
computer with a data transfer speed of 400 Mbps. A fully manual lens 
which allows manual focus and zoom was fitted to the camera. A UV 
filter was employed to protect the lens and to prevent haziness due to 
ultraviolet light. 

Image processing module

The Image Processing Module (IPM) of the VBN system detects 
horizon and runway centreline from the images and computes the 
aircraft attitude, body rates and deviation from the runway centreline. 
Figure 5 shows the functional architecture of the IPM.

The detailed processing performed by the IPM isillustrated in figure 
6. As a first step, the size of the image is reduced from 1024×768 pixels 
to 512×384 pixels. After some trials, it was found that this size reduction 
speeds up the processing without significantly affecting the features 
detection process. The features such as the horizon and the runway 
centreline are extracted from the images for attitude computation. The 
horizon is detected in the image by using canny edge detector while the 

runway centreline is identified with the help of Hough Transform. The 
features are extracted from both, the current view (image received from 
the on-board camera) and the current key frame. The roll and pitch are 
computed from the detected horizon while the runway centreline in 
used to compute the deviation of aircraft from the runway centreline. 
Then the roll and pitch difference are computed between the current 
view and the current key frame. Optical flow is determined for all the 
points on the detected horizon line in the images. The aircraft body 
rates are then computed based on the optical flow values. The image 
processing module provides the aircraft attitude, body rates, pitch and 
roll differences between current view and key frame, and deviation 
from the runway centreline. The attitude of the aircraft is computed 
based on the detected horizon and the runway. The algorithm calculates 
the pitch and roll of the aircraft using the horizon information while 
aircraft deviation from the runway centreline is computed using the 
location of runway centreline in the current image. 

Figure 6 shows the relationship between the body (aircraft) frame 
(Ob,Xb,Yb, Zb), camera frame (Oc, Xc,Yc, Zc) and Earth frame coordinates 
(Ow, Xw, Yw, Zw). 

The position of a 3D space point P in Earth coordinates is 
represented by a vector Xp

w with components xp, yp and zp in the 
Earth frame. The position of aircraft centre with respect to the Earth 
coordinates is represented by the vector Xb

w components xb, yb and zb 
in the Earth frame. The vector Xp

c represents the position of the point 
P with respect to the camera frame with components xcp, ycp and zcp in 
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Figure 3: VBN process.
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Sensor type Sony ICX204AQ/AL 1/3” CCD sensor Scan type: 

Progressive
Resolution 1024×768 BW
Format 8-bit or 16-bit, 12-bit A to D
Pixel Size 4.65 μm×4.65 μm
Frame Rates 1.875, 3.75, 7.5, 15, 30fps
Video output signal 8 bits per pixel/12 bits per pixel digital data
Interfaces 6-pin IEEE-1394 for camera control and video data 

transmission 
4 general purpose digital input/output pins

Voltage Requirements 8-32V
Power Consumption <3W
Gain Automatic/Manual modes at 0.035dB resolution 

(0 to 24 dB)
Shutter Automatic/Manual/Extended Shutter modes (20 μs 

to 66 ms @ 15 Hz)
Trigger Modes DCAM v1.31 Trigger Modes 0, 1 and 3
SNR 50dB or better at minimum gain
Camera Dimensions
(no lenses)

30 mm×31 mm×29 mm

Mass 60g without optics
Operating Temperature 0° to 45°C
Focal length 3.5-8.0 mm
Max CCD Format 1/3”
Aperture F1.4–16 (closed) - Manual control
Maximum Field of View 
(FOV)

Horizontal: 77.6°/Vertical: 57.6°

Min working distance 0.4m
Lenses Dimensions (mm) 34.0 diameter×43.5 length

Table 1: Point Grey Flea and Lenses Specifications.



Citation: Roberto Sabatini R, Richardson M, Bartel C, Shaid T, Ramasamy S (2013) A Low-cost Vision Based Navigation System for Small Size 
Unmanned Aerial Vehicle Applications. J Aeronaut Aerospace Eng 2: 110. doi:10.4172/2168-9792.1000110

Page 6 of 16

Volume 2 • Issue 2 • 1000110
J Aeronaut Aerospace Eng
ISSN: 2168-9792 JAAE, an open access journal 

the camera frame. The position of centre of camera lens with respect 
to the body frame is represented by the vector Xc

b. The vector Xc
w 

represents the position of lens centre with respect to the ground frame 
with components xc, yc and zc in the ground frame. The position of point 
P with respect to body frame with components in the Earth frame can 
be computed as w w

p bX X− .The transformation matrix from Earth frame 
to body frame Cwb can be obtained in terms of the yaw ψ, pitch θ, and 
roll angle ф as: 

cos cos cos sin sin
cos sin sin sin cos cos cos sin sin sin sin cos

sin sin cos sin cos sin cos cos sin sin cos cos

b
wC

θ ψ θ ψ θ
φ ψ φ θ ψ φ ψ φ θ ψ φ θ
φ ψ φ θ ψ φ ψ φ θ ψ φ θ

− 
 = − + + 
 + − + 

 (1)

The position of point P with respect to the aircraft’s body with 
components in the body frame can be obtained as: 

( )b b w w
p w p bX C X X= −                        (2)

The position of point P with respect to the camera frame can also be 
found in a similar way as:

 ( ) ( )c c b b c b w w c b
p b p c b w p b b cX C X X C C X X C X= − = − −                   (3)

Where Cbc is the constant transformation matrix from the body 
frame to the camera frame. With the assumption that the camera is 
fixed with respect to the body and the angle from the camera optical 
axis to the longitudinal axis of the aircraft is fixed value, c b

b cC X−  is a 
known constant vector with components kx, ky and kz in the camera 
frame. In this case, the velocity and rotation rate of aircraft are the same 
as those of the camera. Thus, the position and attitude of the aircraft can 
be easily computed according to those of the camera as:

[ , , ]w w w c b w w T
b c c b c c c x y zX X C C X X C k k k= − = −                  (4)

cφ φ=                      (5)

0cθ θ θ= −                       (6)

cψ ψ=                    (7)

Where фc is the roll, θc is the pitch, ψc is the yaw and θ0 is the angle 
of incidence of the camera. The transformation matrix from camera 
frame to the ground frame, represented by Cc

w, is obtained from:

cos cos cos sin sin sin cos sin sin cos sin cos
cos sin cos cos sin sin sin sin cos cos sin sin
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θ ψ φ ψ φ θ ψ φ ψ φ θ ψ

θ φ θ φ θ

− + + 
 = + − + 
 − 

         (8)

[ ]c w T
w cC C=                     (9)

Eq. (9) represents the transformation matrix from the Earth frame 
to the camera frame coordinates [2]. From now onwards, only the state 
estimates of the camera are considered. The position of 3D point P with 
respect to camera frame is given by:

 ( )c c w w
p w p cX C X X= −                 (10)

With components in the camera frame given by:
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      (11)

Then, the coordinates (u,v) of P in the image plane can be obtained 
from:

fXu
Z

=                  (12)

fYv
Z

=                 (13)

Using the coordinate previously defined, the point P is assumed 
to be located on the detected horizon line. As the Earth’s surface is 
approximated by a plane [3,9], a normal vector to the plane, nw can be 
described as:

[ ]010 T
wn =                   (14)
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If the horizon line is described by a point Xp
w and a direction vector 

lw tangential to the line of horizon visible to the image plane, then:

[ 0 ]w T
pX x d=                     (15)

[100]T
wl =                      (16)

Where x is an arbitrary point along x-axis and d is the distance to 
horizon along z-axis. If the camera is assumed to be placed directly 
above the origin of the ground frame, the position of camera w

cX  can 
be described as:

[0 0]w T
cX h=                       (17)

Then, a point on horizon may be expressed as:
w c w
p p cX X X= +                                     (18)

The horizon projection on the image plane can be described by the 
point p and a direction vector m as:

0
T

x ym m m =                     (19)

[ ]Tp uvf=                  (20)

Where ( )/y xm m  gives the gradient of the horizon w
pX  line. As the 

position of the horizon lies on the surface of the ground plane, therefore:

. 0w
w pn X =                   (21)

Substituting Xp
w gives:

 ) 0.( c w
w p cn X X+ =                  (22)

The direction vector of the horizon line lw lies on the plane and is 
therefore orthogonal to the normal vector. Therefore:

0.w wn l =                   (23)

Equations (22) and (23) are in form known as line plane 
correspondence problem as proposed by [18]. Recalling the equations 
for a projective perspective camera:

u X
fv Y
Z

f Z

   
   =   
      

                   (24)

Substituting Eq. (24) into Eq. (22), roll angle can be derived as [6]:

 1 1tan tan y

x

m
m

φ − − − 
=  

 
                 (25)

Which is an intuitive result that roll angle is dependent on the 
gradient of the horizon line on the image plane. Similarly, it can be 
shown that substituting Eq. (20) into Eq. (22), the pitch angle can be 
derived as [6]:

1 sin costan
sin cos

hf ud vd
df uh vh

φ φθ
φ φ

−  + +
= ± − − 

              (26)

If the distance to the horizon is much greater than the height of the 
aircraft (i.e., d h

, the expression for pitch reduces to the following:

1 sin costan u v
f

φ φθ −  +
= ± 

 
               (27)

Which shows that pitch is dependent on roll angle, focal length and 
the position of horizon in the image plane. Optical flow depends on the 

velocity of the platform, angular rates of the platform and the distance 
to any features observed [6]. Differentiating Eq. (24) we obtain:

2
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Z Z Z
−  = = − 

 

 

  

                       (28)
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Substituting Eq. (28) into the time derivative of Eq. (18) yields the 
classical optical flow equations [6]: 
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If the observed point lies on the horizon, then Z will be large and 
the translational component will be negligible. In this case, Eq. (30) 
reduces to:
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              (31)

To minimize the effect of errors, a Kalman filter is employed. The 
state vector consists of the roll angle, pitch angle and body rates of the 
aircraft. It is assumed that the motion model of the aircraft is disturbed 
by uncorrelated zero-mean Gaussian noise.

( ) ( )( ) ( )1 ,x k f k x k kη+ = +                (32)

( ) ( )( ) ( ),z k h k x k w k= +                (33)

Where ( )x k  is the state vector of the aircraft while ( )kη  is the 
uncorrelated zero-mean Gaussian random vector with diagonal 
covariance matrix ( )Q k . The measurement vector at time k is 
represented by z(k) and w(k) is the zero-mean Gaussian noise vector 
with a diagonal matrix R(k). If the body rates are assumed to be 
approximately constant during the sampling interval t∆  and first order 
integration is applied, then the state transition equations are as follows:
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Where

( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( sin sin cos cos tan tanx y zk k k k k k kφ ω φ ω φ φ ω= + +


       (35)

( ) ( ) ( )( ) ( ) ( )( )cos cos sin sinx yk k k k kθ ω φ ω φ= −


              (36)

The measurement equations are comprised of direct observations of 
the pitch and the roll from the horizon and i optical flow observations 
on the detected horizon line. Therefore, the length of the measurement 
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vector z(k) is 2(i+1). The relation of measurement vector and the states 
is represented by following linear equations:
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VBN sensor performance

Based on various laboratories, ground and flight test activities with 
small aircraft and UAV platforms, the performance of the VBN sensor 
were evaluated. Figure 7 shows a sample image used for testing the 
VBN sensor algorithms and the results of the corresponding horizon 
detection process for attitude estimation purposes.

The algorithm detects the horizon and the runway centreline from 
the images. The horizon is detected in the image by using canny edge 
detector with a threshold of 0.9 and standard deviation of 50. In this 
experiment, the values of the threshold and the standard deviation were 

selected by hit-and-trial method. The resulting image after applying 
the canny edge detector is a binary image. The algorithm assigns value 
‘1’ to the pixels detected as horizon while the rest of the pixels in the 
image are assigned value ‘0’. From this test image, the computed roll 
angle is 1.26° and the pitch angle is -10.17°. To detect the runway in the 
image, kernel filter and Hough Transform are employed. The runway 
detected from the same test image is shown in figure 8. For this image, 
the location of the runway centreline was computed in pixels as 261. 
The features were extracted from both the current view (image received 
from the on-board camera) and the current key frame. After the pitch, 
roll and centreline values were determined, the roll/pitch differences 
and the deviation from centreline are computed between the current 
view and the current key frame.

The algorithm also computes the optical flow for all the points on 
the detected horizon line in the images. The optical flow is determined 
based on the displacement of points in two consecutive frames of 
a video. The algorithm takes two consecutive frames at a time and 
determines the motion for each point on the horizon. These optical flow 
values are used to compute the body rates of the aircraft. An example of 
the optical flow calculation is shown in Fig. 8, where the original image 
(from the camera) is shown on the left and the image on the right shows 
the optical flow vectors (in red) computed for the detected horizon 
line. The vectors are magnified by a factor of 20. Since the vectors on 
the right half of the horizon line are pointing upwards and the vectors 
on the left halfare pointing downwards, the aircraft is performing roll 
motion (clockwise direction). 

The real-time performance of the IPM algorithms were evaluated 
using a combination of experimental data(from the VBN camera) 
collected in flight and IPM simulation/data analysis performed on 
the ground using Matlab. The algorithm processed the video frame 
by frame and extracted horizon and the runway from each frame. 
The roll and pitch of the aircraft were computed based on the horizon 
detected in each frame. The algorithm also identified the location of 
runway centreline in each frame which was further used to calculate 
the deviation of the aircraft from the runway centreline. Kalman filter 
was employed to reduce the effect of errors in the measurements. The 
roll and roll-rate results obtained for 800 frames are shown in figure 
9. Similarly, figure 10 depicts the results for pitch and pitch-rate. The 
computed location of centreline (pixels) and the centreline drift rate 
(pixels per second) are shown in figure 11.

Although the test activities were carried out in a limited portion of 
the aircraft/UAV operational flight envelopes, some preliminary error 
analysis was performed comparing the performance of the VBN sensor 
an INS. The mean and standard deviation of the VBN attitude and 
attitude-rate measurements are listed in table 2.

The performance of the VBN sensor is strongly dependent on the 
characteristics of the employed camera. The developed algorithms are 
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Figure 9: Received image from camera (left) and optical flow computed for 
the detected horizon in the image (right).
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unable to determine the attitude of the aircraft in case of absence of 
horizon in the image. Similarly, the deviation of the aircraft from the 
runway centreline cannot be computed in the absence of runway in the 
image. The most severe physical constrain is imposed by the FOV of 
the camera. The maximum vertical and horizontal FOVs of the Flea 
Camera are 57.6° and 77.6° respectively. Due to this limitation, the VBN 
sensor can compute a minimum pitch angle of -28.8° and a maximum 
of +28.8°. Additionally, environmental factors such as fog, night/low-
light conditions or rain also affect the horizon/runway visibility and 
degrade the performance of the VBN system. 

Integration Candidate Sensors
There are a number of limitations and challenges associated to the 

employment VBN sensors in UAV platforms. VBN is best exploited 
at low altitudes, where sufficient features can be extracted from the 
surrounding. The FOV of the camera is limited and, due to payload 
limitations, it is often impractical to install multiple cameras. When 
multiple cameras are installed, additional processing is required for 
data exploitation. In this case, also stereo vision techniques can be 
implemented. Wind and turbulence disturbances must be modelled and 
accounted for in the VBN processing. Additionally the performance 
of VBN can be very poor in low-visibility conditions (performance 
enhancement can be achieved employing infrared sensors as well). 
However, despite these limitations and challenges, VBN is a promising 
technology for small-to-medium size UAV navigation and guidance 
applications, especially when integrated with other low-cost and 
low-weight/volume sensors currently available. In our research, we 
developed an integrated NGS approachemployingtwo state-of-the-art 
physical sensor: MEMS-based INS and GPS, as well as augmentation 
from Aircraft Dynamic Models (Virtual Sensor) in specific flight phases.

GNSS and MEMS-INS sensors characteristics

GNSS can provide high-accuracy position and velocity data 
using pseudorange, carrier phase, Doppler observables or various 
combinations of these measurements. Additionally, using multiple 
antennae suitably positioned in the aircraft, GNSS can also provide 
attitude data. In this research, we considered GPS Standards Positioning 
Service (SPS) pseudorange measurements for position and velocity 
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VBNMeasured Parameters Mean Standard Deviation
Roll angle 0.22° 0.02°
Pitch angle -0.32° 0.06° 
Yaw angle (centreline deviation) 0.64° 0.02°
Roll Rate 0.33°/s 0.78 °/s
Pitch Rate -0.43°/s 0.75°/s
Yaw Rate 1.86°/s 2.53°/s

Table 2: VBS Attitude and Angular Rates Errors Parameters.

Errors Mean Standard Deviation
North Position Error (m) -0.4 1.79
East Position Error (m) 0.5 1.82
Down Position Error (m) 0.17 3.11
North Velocity Error(mm/s) 0 3.8
East Velocity Error (mm/s) 0 2.9
Down Velocity Error (mm/s) 2.9 6.7

Table 3: GPS position and velocity errors.
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computations. Additional research is currently being conducted 
on GPS/GNSS Carrier Phase Measurements (CFM) for attitude 
estimation. Table 3 lists the position and velocity of state-of-the-art 
SPS GPS receivers. Position error parameters are from [18] and velocity 
error parameters are from [19], in which an improved time differencing 
carrier phase velocity estimation method was adopted. Typically, GPS 
position and velocity measurements are provided at a rate of 1 Hz.

An Inertial Navigation System (INS) can determine position, 
velocity and attitude of a UAV based on the input provided by various 
kinds of Inertial Measurement Units (IMUs). These units include 3-axis 
gyroscopes, measuring the roll, pitch and yaw rates of the aircraft 
around the body-axis. They also comprise 3-axis accelerometers 
determining the specific forcesin the inertial reference frame. In 
our research, we considered a strap-down INS employing low-cost 
MEMS Inertial Measurement Units (IMUs). MEMS-based IMUs are 
low-cost and low-weight/volume devices that represent an attractive 
alternative to high-cost traditional INS sensors, especially for general 
aviation or small UAVs applications. Additionally, MEMS sensors do 
not necessitate high power and the level of maintenance required is far 
lower than for high-end INS sensors [20]. The main drawback of these 
sensors is the relatively poor level of accuracy of the measurements that 
they provide. In our research, INS-MEMS errors are modeled as White 
Noise (WN) or as Gauss-Markov (GM) processes [21,22]. Table 4 lists 
the MEMS-INS error parameters considered in our research. 

ADM virtual sensor characteristics

The ADM Virtual Sensor is essentially a knowledge-based module 

used to augment the navigation state vector by predicting the UAV 
flight dynamics (aircraft trajectory and attitude motion). The ADM can 
employ either a 6-Degree of Freedom (6-DOF) or a 3-DOF variable 
mass model with suitable constraints applied in the different phases of 
the UAV flight. The input data required to run these models are made 
available from aircraft physical sensors (i.e., aircraft data network 
stream) and form ad-hoc databases. Additionally, for the 3-DOF case, 
an automatic manoeuvre recognition module is implemented to model 
the transitions between the different UAV flight phases. Typical ADM 
error parameters are listed in table 5 [21,22]. Table 6 lists the associated 
error statistics obtained in a wide range of dynamics conditions for 20 
seconds runtime.

Multisensor System Design and Simulation
The data provided by all sensors are blended using suitable data 

fusion algorithms. Due to the non-linearity of the sensor models, an 
EKF was developed to fuse the information provided by the different 
MINS sensors and to provide estimates of position, velocity and attitude 
of the platform in real-time. Two different integrated navigation system 
architectures were defined, including VBN/IMU/GPS (VIG) and VIG/
ADM (VIGA). The VIG architecture uses VBN at 20 Hz and GPS 

IMU Error Parameters Error Models
p gyro noise WN (0.53°/s)
q gyro noise WN (0.45°/s)
r gyro noise WN (0.44°/s)
x accelerometer noise WN (0.013 m/s2)
y accelerometer noise WN (0.018 m/s2)
z accelerometer noise WN (0.010 m/s2)
p gyro bias GM (0.0552°/s, 300 s)
q gyro bias GM (0.0552°/s, 300 s)
r gyro bias GM (0.0552°/s, 300 s)
x accelerometer bias GM (0.0124 m/s2, 300 s)
y accelerometer bias GM (0.0124 m/s2, 300 s)
z accelerometer bias GM (0.0124 m/s2, 300 s)
p gyro scale factor GM (10000 PPM, 18000 s)
q gyro scale factor GM (10000 PPM, 18000 s)
r gyro scale factor GM (10000 PPM, 18000 s)
x accelerometer scale factor GM (10000 PPM, 18000 s)
y accelerometer scale factor GM (10000 PPM, 18000 s)
z accelerometer scale factor GM (10000 PPM, 18000 s)

Table 4: MEMS-INS error parameters.

ADM Error Parameters Error Models
Coefficients (on all except the flap 
coefficients)

GM (10%,120s)

Control input WN (0.02°) aileron, rudder, elevator
Center of gravity error [x,y,z] Constant [0.001, 0.001, 0.001]m
Mass error 2% of true
Moment of inertia error [Jx,Jy,Jz,Jxz] 2% of true
Thrust Error Force, 5% of true, Moment 5% of true
Gravity Error 1σ 36 μg
Air Density Error 5% of true
Speed of sound Error 5% of true

Table 5: ADM error parameters.

Mean Standard Deviation

North Velocity Error 4.48E-3 3.08E-2
East Velocity Error -3.73E-2 1.58E-1
Down Velocity Error -4.62E-2 5.03E-2
Roll Error 4.68E-5 7.33E-3
Pitch Error 3.87E-3 2.41E-3
Yaw Error -1.59E-3 7.04E-3

Table 6: ADM error statistics.
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at 1 Hz to augment the MEMS-IMU running at 100 Hz. The VIGA 
architecture includes the ADM (computations performed at 100 Hz) 
to provide attitude channel augmentation. The corresponding VIG and 
VIGA integrated navigation modes were simulated using MATLABTM 
covering all relevant flight phases of the AEROSONDE UAV (straight 
climb, straight-and-level flight, straight turning, turning descend/
climb, straight descent, etc.). The navigation system outputs were fed 
to a hybrid Fuzzy-logic/PID controller designed at Cranfield University 
for the AEROSONDE UAV and capable of operating with stand-alone 
VBN, as well as with VIG/VIGA and other sensors data [23,24]. 

VIG and VIGA architectures

The VIG architecture is illustrated in figure 12. The INS position 
and velocity provided by the navigation processor are compared to the 
GPS position and velocity to form the measurement input of the data 
fusion block containing the EKF. A similar process is also applied to the 
INS and VBN attitude angles, whose differences are incorporated in the 

EKF measurement vector. The EKF provides estimates of the Position, 
Velocity and Attitude (PVA) errors, which are then removed from the 
sensor measurements to obtain the corrected PVA states. The corrected 
PVA and estimates of accelerometer and gyroscope biases are also used 
to update the INS raw measurements.

The VIGA architecture is illustrated in figure 13. As before, the 
INS position and velocity provided by the navigation processor are 
compared to the GPS data to form the measurement input of EKF. 
Additionally, in this case, the attitude data provided by the ADM and 
the INS are compared to feed the EKF at 100 Hz, and the attitude data 
provided by the VBS and INS are compared at 20 Hz and input to the 
EKF. Like before, the EKF provides estimations of PVA errors, which 
are removed from the INS measurements to obtain the corrected PVA 
states. Again, the corrected PVA and estimates of accelerometer and 
gyroscope biases are used to update INS raw measurements.
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VIG and VIGA Simulation
Both the VIG and VIGA multi-sensor architectures were tested 
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Figure 15: Horizontal and vertical flight profiles.
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Figure 16: VIG position error time histories.

by simulation in an appropriate sequence of flight manoeuvres 
representative of the AEROSONDE UAV operational flight envelope. 
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An FLC/PID controller was used for simulation. The duration of the 
simulation is 1150 seconds (approximately 19 minutes). The horizontal 
and vertical flight profiles are shown in figure 14. 

The list of the different simulated flight manoeuvres and associated 
control inputs is provided in table 7. The numbered waypoints are the 
same shown in figure 15.

The VIG position error time histories (east, north and down) 
are shown in figure 16. For comparison, also the GPS position errors 
(unfiltered)are shown. Table 8 presents the position error statistics 
associated to each flight phase.

The VIG velocity error time histories are shown in figure 17. For 
comparison, the GPS velocity error time histories are also shown. GPS 
is the dominating sensor for velocity computations but a significant 
improvement is with the VIG system on the accuracy of the vertical 
data. Table 9 shows the velocity error statistics associated to each flight 
phase. The velocity error is determined by comparing the velocities 

calculated in presence of modeled errors, with the nominal velocity 
values.

The attitude error time histories of the VIG system are shown in 
figure 18. Table 10 presents the associated attitude error statistics.

As discussed above, the ADM data were used in the VIGA 
architecture to update the attitude channel (the position and velocity 
channels are derived from the VIG system). Therefore, only the attitude 
error statistics of the VIGA system are presented here. The time histories 
of the VIGA attitude errors are shown in figure 19 and compared with 
the corresponding VIG attitude errors. Table 11 presents the VIGA 
attitude error statistics.

During the initial VIGA simulation runs it was evidenced that the 
ADM data cannot be used without being reinitialized regularly. For the 
AEROSONDE UAV manoeuvres listed in table 12, it was found that 
the optimal period between ADM reinitialisation was in the order of 20 
seconds. Converting the data in Table 11 and 12 to the corresponding 
RMS (95%) values, we obtain the error data in table 13 and 14. 
Comparing the two tables, it is evident that the ADM virtual sensor 
contributes to a moderate reduction of the overall attitude error budget 
in all relevant flight phases.

To conclude the simulation data analysis, table 14 shows a 
comparison of the VIG/VIGA horizontal and vertical accuracy (RMS-
95%) with the required accuracy levels for precision approach [25,26]. 
The VIG/VIGA performances are in line with CAT II precision approach 
requirements. Future research will address the possible synergies of the 
VIG/VIGA architectures with GPS/GNSS space, ground and aircraft-
based augmentation systems. 

Conclusions
In this paper we have described the research activities performed 

to design a low-cost and low-weight/volume integrated NGS system 
suitable for small/medium size UAV applications. As a first step, 
we designed and tested a VBN sensor employing appearance-based 
techniques and specifically tailored for UAV low-level flight, including 
precision approach and landing operations. In addition to horizon 
detection and image-flow, the VBN sensor also employed runway 
features extraction during the approach phase. Various candidates 
were considered for integration with the VBN sensor and, as a result, 
GPS and MEMS-IMUs (with possible augmentation from ADM) 
were finally selected. The multisensory integration was accomplished 
with an EKF. The attitude/attitude-rate accuracies obtained with the 
VBN sensor were evaluated by a combination of laboratory, ground 
and flight test activities. The results were satisfactory in low-level 
flight and during the approach and landing phase of the UAV flight. 
However, the VBN sensor performance was strongly dependent on 
the characteristics of the employed camera. The algorithms developed 
are unable to determine the attitude of the aircraft in case of absence 
of horizon in the image. Similarly, the deviation of the aircraft from 
the runway centreline cannot be computed in the absence of runway 
in the image. The most severe physical constrain is imposed by the 
angular FOV of the camera. The maximum vertical and horizontal 
FOVs of the employed camera are 57.6° and 77.6° respectively. Due to 
this limitation, the VBN sensor can compute a minimum pitch angle of 
-28.8° and a maximum of +28.8°. Current research shows that for wind 
speeds greater than 20 m/s, the VBN/IPM algorithms are marginally 
usable for navigation purposes as well as for guidance. Environmental 
factors such as fog, night/low-light conditions or rain also affect the 
horizon/runway visibility and degrade the performance of the VBN 
system. To cope with these limitations, current research is investigating 

Flight Maneuver Required 
Roll (deg)

Required 
Pitch (deg)

Time 
(s)

Legs
(Waypoints)

Straight Climb (Take off) 0 10.00 100 [0,1]
Right TurningClimb -2 4.00 150 [1,2]
Straight and Level 0 2.25 150 [2,3]
Level Left Turn 3 2.25 100 [3,4]
Straight Descent 0 -0.7 150 [4,5]
Straight and Level 0 2 150 [5,6]
Level Right Turn -2 2 150 [6,7]
Left Turning Descent 3 -0.5 100 [7,8]
Straight Descent 0 -1 100 [8,9]

Table 7: Flight manoeuvres and control inputs.

Phase of Flight North Position East Position Down Position
Mean
(m)

σ
(m)

Mean
(m)

σ
(m)

Mean
(m)

σ
(m)

Straight Climb 1.22 4.38E-01 -4.34E-01 6.20E-01 -1.80E-01 5.30E-01
Right Turning 
Climb

9.88E-01 8.68E-01 -1.36 4.86E-01 -2.40E-01 6.02E-01

Straight and 
Level

-8.01E-01 4.71E-01 -1.51 5.02E-01 -4.38E-01 6.82E-01

Level Left Turn 1.16 1.32 -1.66 5.68E-01 -5.28E-01 6.57E-01
Straight Descent 2.77 3.60E-01 -7.20E-01 4.48E-01 -4.92E-01 6.36E-01
Level Right Turn 2.06 1.07 -1.86 5.92E-01 -1.29E-01 8.37E-01
Left Turning 
Descent

1.65 7.29E-01 -1.63 5.35E-01 -2.66E-01 6.23E-01

Table 8: VIG position error statistics.

Phase of Flight North Velocity East Velocity Down Velocity
Mean
(m/s)

σ
(m/s)

Mean
(m/s)

σ 
(m/s)

Mean
(m/s)

σ
(m/s)

Straight Climb -6.40E-03 1.73E-02 -4.14E-03 2.14E-02 1.30E-02 1.89E-01
Right Turning 
Climb

-7.97E-03 1.11E-02 -7.59E-03 7.93E-03 -2.90E-04 6.79E-03

Straight and 
Level

-7.19E-03 1.00E-02 3.63E-03 1.08E-02 -4.20E-04 6.78E-03

Level Left Turn 1.44E-02 1.51E-02 3.61E-03 6.99E-03 -1.80E-04 6.90E-03
Straight 
Descent

-4.50E-03 3.64E-02 -3.71E-03 3.32E-02 -3.80E-04 9.55E-03

Level Right 
Turn

-3.11E-02 1.08E-01 1.21E-02 4.91E-02 7.64E-04 9.82E-03

Left Turning 
Descent

 -3.28E-02 1.13E-01 -6.33E-03 3.71E-02 -1.32E-03 1.54E-02

Table 9: VIG velocity error statistics.
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Figure 17: VIG velocity error time histories.

Phaseof Flight Roll (Phi) Pitch (Theta) Yaw (Psi)
Mean 
(deg)

σ 
(deg)

Mean 
(deg)

σ 
(deg)

Mean 
(deg)

σ 
(deg)

Straight Climb -6.07E-02 5.54E-01 3.16E-01 2.92E-01 -2.17E-01 1.06
Right Turning 
Climb

-4.25E-01 3.09E-01 -5.10E-02 4.65E-01 -5.39E-01 6.99E-01

Straight and 
Level

-4.22E-01 3.44E-01 -2.24E-02 3.80E-01 -1.38 8.02E-01

Level Left Turn 6.13E-01 4.96E-01 -1.39E-01 4.27E-01 1.39 1.36
Straight 
Descent

3.89E-01 4.60E-01 -3.68E-01 3.50E-01 2.03 1.08

Level Right 
Turn

7.58E-01 7.69E-01 -5.46E-01 8.54E-01 3.91E-01 8.59E-01

Left Turning 
Descent

1.22 7.06E-01 -5.37E-01 7.84E-01 -3.36E-01 8.86E-01

Table 10: VIG attitude error statistics.

Phase of Flight Roll (Phi) Pitch (Theta) Yaw (Psi)
Mean
(deg)

σ
(deg)

Mean
(deg)

σ
(deg)

Mean
(deg)

σ
(deg)

Straight Climb -6.76E-02 5.19E-01 3.58E-01 2.08E-01 -1.19E-01 1.01
Right Turning 
Climb

-4.42E-01 2.64E-01 -8.37E-02 4.07E-01 -6.07E-01 6.97E-01

Straight and 
Level

-4.38E-01 3.06E-01 -3.61E-02 3.27E-01 -1.44 7.92E-01

Level Left Turn 6.16E-01 4.77E-01 -1.60E-01 3.70E-01 1.45 1.31
Straight 
Descent

3.92E-01 3.58E-01 -4.22E-01 2.37E-01 2.07 1.08

Level Right 
Turn

7.79E-01 6.99E-01 -6.49E-01 7.39E-01 4.73E-01 8.30E-01

Left Turning 
Descent

9.00E-02 1.44E-01 3.74E-01 4.50E-01 -1.78E-01 8.59E-01

Table 11: VIGA attitude error statistics.
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the potential synergies obtained by integrating daylight camera vision 
sensors with Infrared and Night Vision Imaging Sensors (IR/NVIS).
Simulation of the VIG integrated navigation mode showed that this 
integration scheme can achieve horizontal/vertical position accuracies 
in line with CAT-II precision approach requirements, with a significant 
improvement compared to stand-alone SPS GPS. An improvement was 
also observed in the accuracy of the vertical velocity data. Additionally, 
simulation of the VIGA navigation mode showed promising results 
since, in most cases, the attitude accuracy is higher using the ADM/
VBS/IMU rather than using VBS/IMU only. However, due to rapid 
divergence of the ADM virtual sensor, there is a need for a frequent 
re-initialization of the ADM data module, which is strongly dependent 
on the UAV flight dynamics and the specific manoeuvres/flight-
phase transitions performed. In the considered portion of the UAV 
operational flight envelope, the required re-initialization interval was 
approximately 20 seconds. To cope with this issue, the original ADM is 
being modified to take into account specific manoeuvre constraints and 
the transition states between various manoeuvres are being carefully 
modeled. Additionally, an automatic manoeuvre recognition algorithm 
is being developed for updating the ADM in real-time and providing 
direct feedback to the VBN sensor. It is expected that, adopting this 
approach, the performances of the multisensory integrated NGS will 
be significantly enhanced both in terms of data accuracy and data 
continuity.
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Phase of Flight RMS-95% 
Phi (deg)

RMS-95% 
Theta (deg)

RMS-95% 
Psi (deg)

Straight Climb 1.11 9.24E-01 2.13
Right Turning Climb 1.05 9.44E-01 1.85
Straight and Level 1.09 7.63E-01 3.30
Level Left Turn 1.58 9.13E-01 3.97
Straight Descent 1.20 1.10 4.67
Level Right Turn 2.16 2.14 1.96
Left Turning Descent 2.46 1.90 1.89

Table 12: VIG attitude RMS-95% errors.

Phase of Flight RMS-95% 
Phi (deg)

RMS-95% 
Theta (deg)

RMS-95% 
Psi (deg)

Straight Climb 1.05 7.56E-01 1.97
Right Turning Climb 1.03 8.20E-01 1.76
Straight and Level 1.07 6.55E-01 3.18
Level Left Turn 1.56 7.90E-01 3.82
Straight Descent 1.06 8.76E-01 4.60
Level Right Turn 2.09 1.84 1.84
Left Turning Descent 1.42 1.17 1.76

Table 13: VIGA attitude RMS-95% errors.

Category of 
approach

Horizontal Accuracy (m)
2D RMS-95%

Vertical Accuracy (m)
RMS-95% Down

Required VIG/VIGA Required VIG/VIGA
CAT I 16

5.8
4

1.61CAT II 6.9 2
CAT III 4.1 2

Table 14: VIGA attitude RMS-95% errors.
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