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Introduction
Cyanobacteria, being both oxygenic and photoautotrophic, 

are some of the oldest organisms on the planet [1]. Given their 
diverse morphology and metabolic infrastructure to produce high 
value biological active precursors, they show tremendous potential 
in agricultural, biopharmaceuticals, drug-discovery, bioprocess 
engineering, and bio-fuels applications [2-7]. The increasing number of 
sequenced cyanobacterial genomes (39 genomes as of December 2011) 
and the rapid advancements in systems biology, has opened up many 
opportunities. More recently, there has been a significant push in the 
development of cyanobacterial proteomics research for industrial and 
bioprocess applications [8].    

While there have been noteworthy successes in the development of 
robust and effective analysis platforms, a major issue that remains to be 
solved in cyanobacterial proteomics is the large dynamic range of the 
proteome. For example, the linear dynamic range of phycobiliproteins 
was found to be up to eight order of magnitude [9], which makes 
the detection and quantification of proteins that are present in low 
abundance particularly difficult [10], especially since most modern 
mass spectrometers typically can only observe 3-4 orders of magnitude 
at best. The development of an effective and robust form of protein 
separation is therefore needed to alleviate this issue. Since proteins can 
be highly complex and diverse in their properties, various separation 
methods can be devised. These include sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) (1-D and 2-D) and 
1-D (usually ion-exchange chromatography) and 2-D (ion-exchange
followed by reversed phase) shotgun approaches. Two-dimensional
SDS-PAGE is a long-standing conventional technique commonly used
to separate and visualise highly complex protein mixtures [11]. In this
technique, proteins are separated based on their isoelectric points (1st

dimension), followed by molecular weight (2nd dimension) [12,13].

Despite its continuing popularity, gel-based separations suffer from a 
number of limitations such as reproducibility and limited detection of 
low abundance proteins [14]. 

One of the emerging gel-free techniques, free flow electrophoresis 
(FFE), has been shown to provide an alternative route to separate 
charged analytes, such as peptides and proteins. This technique can 
also be applied to separate low-molecular weight organic compounds, 
membranes, organelles and whole cells in aqueous media, under 
both native and denaturing conditions [15]. Different separation 
approaches such as isoelectric point (IEF), mass to charge ratio (zone 
electrophoresis) and electrophoretic mobility (isotachophoresis) can be 
realised using the FFE setup [16]. FFE approach provides the advantages 
of very high sample load due to its continuous sample introduction, 
short separation time (usually 1 hour) and multiple sample recovery; 
thus allowing effective high throughput analysis [17]. This technique 
has been shown to be compatible with traditional 2D-SDS-PAGE and 
2D-LC setup on a vast portfolio of applications, including microbial 
[18], human [19], model insects (Drosophila melanogaster) [17], cancer 
[20] and general medical research [21]. Potential role of FFE in accessing
the low abundance proteome has been discussed in detail in a recent
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review.  Readers are directed to a recent publication by Nissum and 
Foucher [22]. Segregation of abundant proteins such as albumin into 
specific fractions can be achieved using FFE under native or denaturing 
condition [22] and that gave an alternative to immunoaffinity technique 
for enrichment of low abundance proteins, similar strategy can be used 
in case of cyanobacteria where abundant proteins such as phycocyanin 
and phycobilisomes can be depleted using FFE. 

Given the advantages and capabilities of FFE, we present an analysis 
of the proteome of the cyanobacterium Nostoc punctiforme (hereafter 
denoted as N. punctiforme) using the IEF mode of separation. This 
proteome has been studied before using ion exchange 2D-LC [23] and 
2D-SDS-PAGE [24,25]. We aim to provide an alternative protein pre-
fractionation strategy that attempts to address the issue of separation of 
high abundance phycobiliproteins.

Materials and Methods
Substrates and chemicals

Trypsin (sequencing grade) was purchased from Promega 
(Madison, WI). Iodoacetamide, ammonium bicarbonate and Tris 
(2-carboxyethyl) phosphine (TCEP) were all obtained from Sigma–
Aldrich (Dorset, UK). Formic acid, acetone and acetonitrile were 
purchased from Fisher Scientific (Loughborough, UK). Distilled and 
deionized water (Milli-Q system, Millipore, UK) was used throughout 
the experiments.

Cell culture and lysis of Nostoc punctiforme

The filamentous, heterocystous cyanobacterium N. punctiforme 
strain PCC 73102 (also ATCC 29133) was cultured in 500 mL Erlenmeyer 
flasks containing 200 mL BG-11₀ medium under constant irradiation of 
45 μmol of photons m-2 s-1 at 25°C [26]. Cells were harvested at mid-
exponential growth phase, and cultures were centrifuged at 4000×g, for 
10 min at room temperature.

Protein extraction

Cells were centrifuged and washed once with extraction buffer 40 
mM Tris-HCl pH 8.5 and proteins extracted via mechanical disruption. 
Crude protein extract was centrifuged at 21,000xg and the supernatant 
stored at -20°C prior to analyses. The total protein concentration was 
determined using RC-DC Protein Quantification Assay (Bio-Rad, 
Hertfordshire, U.K.). 1 mg of the proteins was used for FFE IEF mode 
separation.

Free flow electrophoresis separation

FFE set-up and separation have been described elsewhere 
[17,27]. In brief, FFE-based IEF was performed using BD™ Free Flow 
Electrophoresis System (BD GmBH, Germany). A concentration of 
1mg/ml protein sample was prepared in separation medium containing 
7 M urea, 2 M thiourea, 250 mM mannitol and carrier ampholytes 
(BD™ IEF Buffer pH 3-10). An IEF pH gradient of 3-10 was generated, 
as confirmed by a pI marker test. The crude proteome sample was 
processed focused under the following conditions: Constant voltage 
and current at 520 V and 13 mA; separation buffer total flow rate at 60 
mL/hr and sample flow rate at 1.0 mL/hr. IEF protein separation was 
carried out at constant temperature to minimise sample degradation 
during focusing (10°C).   

Sample clean-up and enzymatic digestion

To allow improved compatibility with downstream LC-MS/MS 

methods, urea/thiourea content in IEF separated protein fractions 
(fractions 23-73, see later sections) were firstly diluted in 40mM 
Tris-HCl pH 8.5 buffer to give <4M urea concentration to give better 
compatibility with our LC-MS workflow. Samples were then spin-
cleaned using Centricon Ultracel YM-3 (3 kDa cutoff) membrane spin 
filters (Millipore, Hertfordshire UK) according to the manufacturer’s 
instructions. Spin-cleaned samples were further exchanged in 3 
cartridge volumes of 40mM Tris-HCl pH 8.5 to remove excess urea. 
Samples were subsequently prepared in solution with minimal transfer 
volume (<50 µl).  Protein disulfide bonds were reduced with tris 
(2-carboxyethyl) phosphine at a final concentration of 12.5 mM at 37°C 
for 1 h and 55mM final concentration of iodoacetamide (1 hour, room 
temperature). The individual fractions were then incubated with 1µg of 
sequencing grade trypsin in 37°C for 12 hours (Promega, Southampton, 
UK). 

Nano LC-MS/MS quadrupole time-of-flight mass 
spectrometry 

Nano-ESI-MS/MS was performed on a QSTAR-XL tandem mass 
spectrometer (Applied Biosystems, MDS-Sciex) coupled with an 
Ultimate 3000 nanoflow HPLC (Dionex, Surrey, U.K.). Dried FFE 
fraction peptides were loaded into a 5 cm, 300 μm i.d. LC-Packings C18 
PepMap trap cartridge under Buffer A (consisting of 0.1% formic acid 
in 5% ACN) and eluted to 15 cm, 75 μm i.d. LC-Packings C18 PepMap 
analytical column via Buffer B (0.1% formic acid in 95% ACN). The 
nanoLC gradient was 75 min in length with the first 8 min comprising 
5% B, followed by 63 min ramping from 5 to 90% B and then 7 min of 
90% B before a final 5 min of 5% B. The flow rate of the gradient was 
300 nLmin-1. Electrospray fused silica PicoTipTM needles were obtained 
from New Objective (Woburn, MA), and the spray voltage was set at 
5.5 kV. The MS data acquisition was performed in the positive ion 
mode and was piloted by Sciex-Analyst (MDS Sciex, Concord, Ontario, 
Canada) using automatic switching between MS and MS/MS modes.

Protein identification and bioinformatic data analysis

Tandem MS data from QSTAR XL was first converted to generic 
MGF peaklists using the mascot.dll embedded script in Analyst QSv. 
1.5 (Applied Biosystems, Sciex; Matrix Science). Spectral data was 
interrogated using an in-house Phenyx algorithm cluster (binary 
version 2.6; Genebio Geneva) at the ChELSI Institute, University of 
Sheffield. The FFE data was interrogated using the Nostoc punctiforme 
database downloaded from NCBI http://www.ncbi.nlm.nih.gov/ (6776 
proteins, May 2009) and parsed using Phenyx parser. The search was 
enzymatically restricted to trypsin with no restriction on molecular 
weight and isoelectric point and one missed cleavage was allowed; 
taxonomy was fixed to root so as to search all entries in the database; 
carbamidomethylation of cysteine was selected as fixed modification 
and oxidation of methionine was allowed to be variable. All details 
of the search parameters are given in supplementary information 
file (Phenyx search parameters.pdf). A turbo scoring tolerance of 
0.3 Da was set. All spectra were searched against both forward and 
reversed (so as to identify the false discovery rate [28] (FDR)) Nostoc 
punctiforme database. All proteins identified with at least 2 peptides 
were considered to be true hit. Physico-chemical parameters including 
the grand average hydropathy (GRAVY) index [29] was calculated 
using ProtParm web-tool service [30] (http://www.expasy.ch/tools/ 
protparam.html). Proteins showing a positive GRAVY index were 
considered as hydrophobic and with negative index considered as 

http://www.ncbi.nlm.nih.gov/
http://www.expasy.ch/tools/
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hydrophilic (GRAVY value ≥ +0.3). Prediction of protein subcellular 
localization was carried out using PSORTb v2.0 [31], while the detection 
of lipoproteins proteins was performed using LipoP web-tool [32].  

Results and Discussion
From the onset of the first published analysis of N. punctiforme 

proteome in 2004, seven separate peer reviewed investigations [23-
25,33-36] have appeared. While their relevant objectives were unique 
and with different intended applications, most workflows were based on 
model techniques: either PAGE-based analysis or shotgun approaches 
(Figure 1a). Thus far, workflows reliant on multidimensional separation 
strategies appeared to be more robust and effective in terms of 
identification and applicability for quantitative measurements. Current 
proteome coverage estimations (c.a. 25%, see subsequent sections) 
suggest that there is still considerable room for improvement before a 
complete/near-complete coverage can be attained [37]. The following 
subsections describe the biological relevance, physiochemical 
properties, and the general impact of the identified proteins for the 
proteomic understanding of N. punctiforme. 

Online LC-MS/MS protein identification analysis 

The LC-MS/MS analysis of the FFE separated proteins resulted in 
the confident identification of 4925 peptides (global peptide level FDR 
[38] < 3%), yielding tandem MS ion evidence for 342 unique proteins
with 207 ≥2 peptides. A master list of all the previously reported N.
punctiforme proteins (1774) observed in proteomics studies to date
[23,24,33-36,39], representing 25% of the theoretical proteome, was
compiled and a comparison made between it and of the proteins
identified in this study (Figure 1b) and supplementary material
S1). This comparison revealed that 94 new proteins were found here
(supplementary material S2). Their distributions were also metabolically
directed, as 7% and 8% of these were from the transcription and signal
transduction metabolic regions respectively. There were also a number
of identifications that were unique to this FFE study: Npun_F0166
(pI=12.024) and Npun_F3727 (pI=3.824) being the proteins at two
extremes of the pI range (for a detailed list of unique identified proteins
in the FFE workflow, refer to Supplementary material S2).

FFE separation

After IEF focussing, we observed that a majority of the proteins 
in N. punctiforme were focused primarily between fractions 23-73, a 
region corresponding to a 2.56 to 10.73 pH range. The observed data 
agrees well with the broad theoretical proteome map of N. punctiforme 
(Figure 1a). For each fraction, the pIs of the confidently identified 
proteins determined in a given fraction were averaged and compared 
with the measured pH attained as a result of the IEF gradient. In 
current study, we observed differences between theoretical pI and the 
pH of the fraction where the protein was found. To check this, the 
protein distribution of each fraction was analysed according to their 
pI. Please refer to Figure 3a and 3b. We observed a vertical spread in 
the theoretical pI range for proteins observed in each fraction. We 
feel that this could be attributed to the protein hydrophobicity and a 
number of factors, such as the degree of denaturation, overall charge, 
critical concentration of the proteins, post-translational modifications, 
electrophoretic suppression, and reliability of the theoretical 
predictions. For example Npun_F0166 (hypothetical protein, pI=12.02 

Figure 1a: Molecular weight v/s pI distribution of theoretical versus experimental 
proteome of Nostoc punctiforme.

 

237 137 20 102 

11 29 4 11

2 0 1
7

1098 57 94

Quantitative iTRAQ
( SCX , 551 proteins)
Ow . et. al (2009)

1&2-D gel (64)
( Cardona  et. al, 2009,
Hunsucker , 2004) 

FFE  (342)
( this study )

3D - LC -MS/MS
(1565)
Anderson et. al 
2006)

Figure 1b: A comparative Venn diagram showing proteins characterized using 
different separation techniques.  Each technique has new unique proteins that 
were not detected in other workflows.  
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Figure 2: Measured pH in the corresponding 50 selected wells of a 96-well format 
plate. The resulting pH gradient shows a steep increase from 2.8 to 10 where the 
linear gradient seems to be stretched out from 10-11. Two flat regions shown by 
the area at low pH (~2.5) represents the pH of anodic stabilizing medium and the 
high pH region (~11) represents the pH of cathodic stabilizing medium.
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and focused at pH 4-6) and Npun_F3800 (acyltransferase 3 (pI=9.463 
and focussed at pH 6-7) [40. A spread in observed pI vs theoretical 
pH were also reported earlier in Sulfolobus solfataricus P2 by Chong 
et al. [41] using strip-based IEF. A key to this of course is whether the 
approach produces a good separation compared to other methods. One 
of the primary concerns of the IEF-based FFE is the potential for highly 
abundant proteins with significant charge heterogeneity, to adversely 
affect the focusing resulting in broadening into neighbouring regions. 
This phenomenon in turn affects the efficacy of the separation, and 
results in an increase of the dynamic range in the affected fractions, 
since poorly focused abundant proteins would interfere with the low 
abundance proteins distributed in multiple adjacent fractions. In this 
respect, we were able to observe 12 highly abundant proteins present 
in consecutive fractions (refer to supplementary material S3, fractions 
collected at pH 6-7). These proteins primarily cover house-keeping 
proteins, such the phycobilisome complexes and those present in the 
central metabolic pathways (see supplementary materials S3), though 
the degree of fractional crossover appeared much better controlled than 
those previously reported using more conventional IEF techniques 
(Figure 4) [42,43]. 

Comparison of protein properties, COG, network and 
coverage maps

To further aid the classification and characterisation of these 
identified protein classes, we also assessed the trans-localisation 

of the 248 proteins (all ≥2 peptides) using markers predicted by the 
PSORTb and SOSUIsignal [44,45]. Nine proteins were predicted to be 
hydrophobic, as identified by their GRAVY index (Table 1). Of these, 
4 proteins have pI more than 9. Npun_F0166 and Npun_F5190 were 
predicted to possess conserved motifs for peptidase I signal, while 
the identified glycolipid transporters (Npun_F2140) were found 
to possess an expected transmembrane helicase. More notably, we 
demonstrate that an integrated FFE workflow provided an improved 
distribution in the identified acidic and neutral proteins as compared 
with existing studies [46]. 10 proteins were predicted to carry pI > 
10, of which one hypothetical protein, Npun_F0166, was uniquely 
detected here. Eighteen cytoplasmic membrane proteins, together 
with five outer membrane proteins, were identified along with GRAVY 
supplementary estimations. These belong primarily to phycobilisome 
linkers, membrane secretion and transport protein classes. We also 
report 21 predicted lipoproteins, which may contain motifs for 
peptidase signal I, II and transmembrane helicases (supplementary 
material S2). The consensual overlap between the different techniques 
(Figure 1b) results in only 29 (1.6%) common identifications, while 
HT-based methods shows only 135 (11.53%) overlap. Of the twenty-
five functional categories compared in Figure 4 functional overlaps 
between the identified proteins in N. punctiforme translates to 38% 
coverage of deduced COG proteome classes. The largest percentage of 
proteins characterized so far was derived primarily from translation, 
ribosomal structure and biogenesis categories (57%). In terms of 
known network coverage, if we superimpose the current data with 
the KEGG metabolic network results in up to 23.35% of the predicted 
enzymatic network and 25.49% of the different metabolic pathways if 
the 1700 proteins were measured together in an independent study. 
Thus, our FFE pilot achieves 18.95% of the defined E.C. network [47]. 
We feel at least with the current set of reported observations, an FFE-
based analysis has provided improved access to a number of important 
metabolic categories such as homologous recombination, mismatch 
repair, nucleotide excision repair, base excision repair, carotenoid 
biosynthesis, sulfur metabolism and lipoic acid metabolism. There 
are however, a number of metabolic pathways that are still poorly 
represented such as RNA processing and modification and chromatin 
structure and dynamics and cell motility. The underpinning reasons for 
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Figure 3a: Number of peptides detected in each FFE fraction. Peptides were 
separated using Mannitol, urea and thiourea based protocol using BD™ IEF 
Buffer pH 3-10 followed by identification by LC-MS/MS and database searching 
using an in-house Phenyx v 2.6 server (GeneBio, Switzerland).  Only peptides 
with a p-score of 0.000001 and z-score of 5.5 are included.    
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Figure 3b: Protein distribution in each fraction. FFE-IEF workflow employing free 
flow electrophoresis for protein separation using 7 M urea, 2 M thiourea, 250 mM 
mannitol and carrier ampholytes (BD™ IEF Buffer pH 3-10). The pI range of each 
fraction was generated using in silico gel map generated using www.jvirgel.de.

Figure 4: Aggregation of cyanobacterial abundant proteins (Phycobilosomes, 
phycobilisome linker proteins and allophycocyanins) to specific pH. Although 
some crossover of focussed abundant proteins observed in other pH range but 
by and large most of the abundant phycobiliprotiens are focussed in pH range of 
5 to 7, thus allowing access to less abundant proteins which might have a positive 
effect on the dynamic range.
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this however, are understandable given the dynamic expression ranges 
between primary and secondary metabolic processes [10].

Conclusion and Future Perspectives
In conclusion, we found FFE to be useful for the fractionation of 

the whole N. punctiforme cell lysate under denaturing conditions. More 
broadly, the technique can be used individually or as a combination with 
other separation technologies. IEF based electrophoresis and RPLC are 
orthogonal techniques and we found that the combination of these 
two techniques is useful for high throughput protein separation in the 
cyanobacteria. This technique can also be implemented with other high 
throughput and conventional proteomics techniques such as gel-based 
and gel-free (shotgun); as demonstrated in other organisms [15,20,21]. 
As shown in the Figure 2, the consensual overlap between different 
techniques is only 1.9%, which makes FFE a highly complementary tool 
for mining the cyanobacterial proteome.

Using this technique, we were able to identify 32 membrane and 
transmembrane proteins, while allowing access to low abundance 
proteins which are typically difficult to identify using traditional 
techniques [48]. With this, it has also enabled improved characterisation 
of a number of metabolic classes (i.e. nucleotide excision repair, base 
excision repair, carotenoid biosynthesis, sulfur metabolism and lipoic 
acid metabolism) which have previously been poorly observed in N. 
punctiforme (Please see supplementary material S2 for proteins found 
unique to the FFE workflow as compared to other work-flows). More 
importantly, the effective ability of FFE to segregate phycobilisome 
proteins would allow more proteins to be identified. More broadly, we 
envisage the potential for FFE to separate the different cell types in N. 
punctiforme and also other cyanobacteria (vegetative cells, heterocyst, 
harmogonia and akinetes); given the technique has been demonstrated 
to separate different cellular compartments and living cells [49]. 
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