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Introduction
Quinoxaline derivatives are an important class of nitrogen-

containing heterocycles in medicinal chemistry [1-5]. Quinoxaline 
synthesis and chemistry has attracted considerable attention in the 
past ten years [6,7]. For example, quinoxaline is a part of various 
antibiotics such as echinomycin, levomycin, and actinoleutin that 
are known to inhibit growth of gram positive bacteria, and are active 
against various transplantable tumors. Some of them exhibit biological 
activities including anti-viral, anti-bacterial, anti-inflammatory, anti-
protozoal, anti-cancer (colon cancer therapies), anti-depressant, 
anti-HIV, and as kinase inhibitors [8-14]. They are also used in the 
agricultural field as fungicides, herbicides, and insecticides [1]. In 
addition, quinoxaline derivatives have also found applications in dyes, 
efficient electron luminescent materials, organic semiconductors, 
chemically controllable switches, building blocks for the synthesis of 
anion receptors, cavitands, and dehydoannulenes [15,16]. They also 
serve as useful rigid subunits in macrocyclic receptors in molecular 
recognition.

Several kinds of synthetic routes toward quinoxalines have 
been developed, which involve condensation of 1,2-diamines with 
α-diketones [17], Bi-catalyzed oxidative coupling of epoxides with 
ene-1,2-diamines [18], cyclization-oxidation of phenacyl bromides 
[19,20]. However, many of these processes suffer from one or more 
limitations such as drastic reaction conditions, low product yields, the 
use of toxic metal salts as catalysts, and relatively expensive reagents. 
Moreover, these reactions are often carried out in polar solvents such 
as DMSO leading to tedious work-up procedures. We were interested 
to examine the synthesis of quinoxalines by the condensation of 
o-phenylenediamine and substituted phenacylbromides in the presence 
of a catalytic amount of 5%WO3/ZrO2 [21,22].
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Experimental
Melting points were determined by using Fisher John’s melting 

point apparatus and are uncorrected [23,24]. IR spectra were recorded 
on a Thermo Nicolet Nexus 670 FT-IR spectrometer. Accurate mass 
measurement was performed on Q STAR mass spectrometer (Applied 
Biosystems USA). 1H NMR spectra and 13C NMR were recorded at 300 
MHz on a Bruker Avance NMR spectrometer with TMS as an internal 
standard (chemical shifts in δ, ppm). For column chromatography, 
silica gel 60-120 mesh was used. For TLC, silica gel 60F254 (Merck) was 
used. 

General procedure for synthesis of 3a-k

To a solution of o-phenylene diamine (1a, 1.1 mmol), phenacyl 
bromide (2a, 1.0 mmol) was added 5%WO3/ZrO2 (0.3 mmol). The 
mixture was refluxed for 0.5 h in 3.0 mL of CH3CN (progress of the 
reaction was monitored by TLC). After completion, the reaction mass 
was cooled to room temperature and the solid catalyst was filtered 
through a Buchner funnel, washed with CH3CN (2×5 mL). The filtrate 
was removed under reduced pressure, and the crude product was 
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purified by column chromatograph. The recovered 5%WO3/ZrO2 dried 
and reused for a number of cycles without significant loss of activity.

2-Phenyl quinoxaline (3a): Solid; Yield 98%; mp 75-78˚C; IR 
(KBr): νmax 2913, 2841, 1916, 1711, 1623, 1521, 1401, 952, 821, 709 cm-1

 . 
1H NMR (300 MHz, CDCl3): δ 7.52-7.61 (s, 3H,Ar-H); 7.73-7.83 (m, 
2H, Ar-H); 8.13-8.22 (m, 4H, Ar-H); 9.33 (s, 1H); 13C NMR (75 MHz, 
CDCl3): δ 127.3, 129.0, 129.1, 129.5, 129.6, 130.1, 130.2, 136.7, 141.5, 
142.2, 143.3.; MS(ESI)+: m/z= 207 [M+H]+. 

2-(4-Methylphenyl)quinoxaline (3b): Solid; Yield 96%; mp 84-
90oC; IR (KBr): νmax 2923, 2855, 1937, 1727, 1676, 1541, 1426, 954, 825, 
712 cm-1

 . 
1H NMR (300 MHz, CDCl3): δ 2.47 (s, 3H,-CH3); 7.31-7.36 (d, 

J=8.30 Hz, 2H, Ar-H); 8.08-8.13 (d, J=8.30 Hz, 4H); 9.29 (s, 1H, =CH); 
13C NMR (75 MHz, CDCl3): δ 21.32, 127.30, 128.96, 129.16, 129.43, 
129.77, 130.07, 140.36, 141.32, 143.19. 

2-(4-Methoxyphenyl) quinoxaline (3c): Solid; Yield 97%; mp 
94-98oC; IR (KBr): νmax 2925, 1602, 1537, 1483, 1458, 1424, 1177, 953, 
845,756 cm-1

 . 
1H NMR (300 MHz, CDCl3): δ 3.89 (s, 3H, OCH3); 7.01-

7.09 (d, J=9.06 Hz, 2H, Ar-H); 7.6-7.7 (m, 2H, Ar-H); 8.03-8.1 (m, 3H, 
Ar-H); 8.15-8.21 (d, J=8.30Hz, 2H, Ar-H); 9.26 (s, 1H,=CH); 13C NMR 
(75 MHz, CDCl3): δ 29.64, 55.39, 114.53, 128.90, 129.02, 129.25, 129.34, 
130.01, 143.06, 161.43. MS(ESI)+: m/z= 237 [M+H]+. 

2-(4-Flourophenyl)quinoxaline (3d): Solid; Yield 92%; mp 112-
118oC; IR: νmax 2924, 2855, 1598, 1543, 1419, 1311, 1227, 1118, 956, 835, 
754 cm-1

 . 
1H NMR (300 MHz, CDCl3): δ 7.20-7.27 (m, 2H, Ar-H); 7.7-

7.8 (m,2H, Ar-H); 8.09-8.11 (m, 2H, Ar-H); 8.21-8.25 (m, 2H, Ar-H); 
9.28 (s, 1H, =CH); 13C NMR (75 MHz, CDCl3): δ 116.10, 116.39, 129.13, 
129.45, 129.60, 130.41, 142.92, 162.59, 165.91. 

2-(4-Chlorophenyl) quinoxaline (3e): Solid; Yield 95%; mp-128-
130oC; IR: νmax 2924, 1590, 1538, 1485, 1309, 1121, 1045, 955, 830, 
753 cm-1. 1H NMR (300 MHz, CDCl3): δ 7.5-7.53 (d, J= 7.80Hz, 2H, 
Ar-H); 7.7-7.79 (m, 2H, Ar-H); 8.09-8.12 (t, J= 6.34 Hz, 2H, Ar-H); 
8.16-8.19 (d, J= 7.806Hz, 2H, Ar-H); 9.29 (s, 1H, =CH); 13C NMR (75 
MHz, CDCl3): δ 128.76, 129.16, 129.40, 129.57, 129.78, 130.47, 142.84, 
142.2,150.55.753. MS(ESI)+: m/z= 241 [M+H]+. 

2-(4-Bromophenyl) quinoxaline (3f): Solid; Yield 94.0%; mp 128-
131oC; IR: νmax 2925, 1634, 1583, 1536, 1481, 1421, 1307, 1121, 1070, 
954, 827, 710 cm-1

 . 
1H NMR (300 MHz, CDCl3): δ 7.66-7.71 (d, J=8.49 

Hz, 2H, Ar-H); 7.73-7.80 (t, J= 7.81 Hz, 2H, Ar-H); 8.06-8.14 (d, J= 
8.49 Hz, 4H, Ar-H); 9.29 (s, 1H, =CH); 13C NMR (75 MHz, CDCl3): δ 
96.17,128.90, 129.481, 129.66, 129.90, 130.15, 132.22, 135.56, 142.46, 
156.28. MS(ESI)+: m/z= 287 [M+H]+. 

2-(Napthalen-2-yl) quinoxaline (3g): Solid; Yield 96%; mp 127-
129oC; IR: νmax 2924, 2855, 1724, 1626, 1542, 1486, 1359, 1193, 963, 
859, 746 cm-1

 .
1H NMR (300 MHz, CDCl3): δ 7.50-7.57 (m, 2H, Ar-H); 

7.7-7.81 (m, 2H, Ar-H); 7.86-7.91 (m, 1H, Ar-H); 7.97-802 (d, J= 8.30 
Hz, 2H, Ar-H); 8.10-8.19(m, 2H, Ar-H); 8.65 (s, 1H, Ar-H); 9.47( s, 
1H, =CH); 13C NMR (75 MHz, CDCl3): δ 124.57, 126.5, 127.39, 127.77, 
128.87,129.22, 129.69, 129.98, 133.38, 134.14, 141.67, 142.87, 143.71. 
MS(ESI)+: m/z= 257 [M+H]+. 

7-Methyl-2-phenylquinoxaline (3h): Solid; Yield 87%; mp 117-
120oC ; IR (KBr): νmax 2923, 2855, 1942, 1725, 1626, 1541, 1426, 954, 
825, 712 cm-1

 . 
1H NMR (300 MHz, CDCl3): δ 2.44 (s, 3H,-CH3); 6.69 

(d, J=8.687Hz, 2H, Ar-H); 7.66-7.7 (m, 2H); 8.1-8.4 (m, 2H), 8.19-8.26 
(m, 2H) 9.30 (s, 1H, =CH); 13C NMR (75 MHz, CDCl3): δ 21.32, 128.21, 
128.92 129.11, 129.43, 130.9, 131.27, 140.36, 141.42, 143.19. MS(ESI)+: 
m/z= 221 [M+H]+. 

2-(4-Bromophenyl)-7-methylquinoxaline (3i): Solid; Yield 78%; 
mp 126-129oC ; IR (KBr): νmax 2923, 2855, 1937, 1727, 1676, 1541, 1426, 
954, 825, 712 cm-1

 . 
1H NMR (300 MHz, CDCl3): δ 2.49 (s, 3H,-CH3); 

6.69 (d, J=8.687Hz, 2H, Ar-H); 7.69-7.71 (m, 2H); 8.04-8.06 (m, 2H), 
8.19-8.27 (m, 2H) 9.30 (s, 1H, =CH); 13C NMR (75 MHz, CDCl3): δ 
21.32, 128.52, 129.34, 129.43,129.91 130.9, 131.27, 140.36, 141.64, 
143.19. MS(ESI)+: m/z= 298 [M+H]+.

7-Bromo-3-(4-methylphenyl)pyrido[2,3-b]pyrazine (3j): Solid; 
Yield 89.0%; mp 118-120oC; IR: νmax 2928, 2855, 1785, 1587, 1432, 1365, 
1123, 986, 874, 823, 753 cm-1

 .; 
1H NMR (300 MHz, CDCl3): δ 2.47 (s, 

3H, CH3); 7.34-7.39 (d, J= 8.309Hz,4H, Ar-H); 7.5-7.7 (m, 1H, Ar-H); 
8.19-8.26 (d, J=8.30 Hz, 2H, Ar-H); 8.59-8.6 (d, J=2.26 Hz, 1H, Ar-
H); 9.14-9.16 (d, J= 2.26Hz, 1H, Ar-H); 13C NMR (75MHz, CDCl3): 
δ 21.324, 124.56, 125.32,126.39, 127.89, 28.16, 129.86, 129.91, 131.26, 
132.82, 133.14, 124.57, 127.77, 128.87, 129.22, 129.29, 129.69, 133.38, 
134.14, 141.67, 142.37, 148, 3.71. 

2-(Biphenyl-4-yl) quinoxaline (3k): Solid; Yield 95%; mp 116-
118oC; IR: νmax 2924, 1722, 1677, 1533,1417, 1303, 1127, 953, 914, 844, 
722 cm-1

 .
1H NMR (300 MHz, CDCl3): δ 7.36-7.39 (d, J=7.16 Hz, 1H, 

Ar-H); 7.42-7.49 (t, J= 7.36 Hz, 2H, Ar-H); 7.61-7.67(d, J=7.17 Hz, 2H, 
Ar-H); 7.7-7.79 (m,4H, Ar-H); 8.1-8.17 (t, J=10.9 Hz, 2H, Ar-H); 8.28 
-8.33 (d, J=8.30 Hz, 2H, Ar-H); 9.36 (s, 1H, =CH).13C NMR (75 MHz, 
CDCl3): δ 124.57, 127.77, 128.87, 129.22, 129.29, 129.69, 133.38, 134.14, 
141.67, 142.37, 143. 

Results and Discussion
In order to optimize the reaction conditions, including solvents and 

temperature, and a suitable catalyst for the preparation of quinoxalines 
from o-phenylene diamine and α-halo-ketones, the condensation of 
o-phenylenediamine, with phenacyl bromide was chosen as a model 
reaction, and its behavior was studied in the presence of different 
catalysts and without catalyst in CH3CN at reflux temperature. The 
results are listed in Table 1. As Table 1 indicates, pTSA, PMA solid, 
FeCl3 gave relatively good yields of the product in long reaction times: 
however by using 5%WO3/ZrO2, the product was produced in excellent 
yield in very short reaction time. Thus, 5%WO3/ZrO2 was the catalyst of 
choice for all the reactions (Scheme 1).

Subsequently, we investigated on the use of different solvents for 
the purpose. In chlorinated solvents such as dichloromethane and 
chloroform the reaction was very slow and resulted in lower product 
yield. Similar results were obtained in coordinating solvents such as 

Table 1: Effect of different reagents and solvents in the condensation of 
o-phenylenediamine 1, phenacyl bromide 2.

Entry  Catalyst  Solvent Condition Time (h) Time (h)
1 TMSCl CH3CN Reflux 14.0 36
2 PMA solid CH3CN Ref lux 11.0 42
3 FeCl3 C CH3CN Ref lux 10.0 45
4 PTSA CH3CN Ref lux 9.0 45
5 5%WO3/ZrO2 CH3CN R.T 4.6 65
6 5%WO3/ZrO2 CH3CN Reflux 0.5 94
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Scheme 1: The condensation of o-phenylenediamine, with phenacyl bromide.
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THF, diethyl and dimethyl ether. On the other hand, conducting the 
reaction in inert solvents such as CH3CN improved the reaction rates as 
well as product yields. After screening different solvents, CH3CN came 
out as the solvent of choice, which not only afforded the products in 
good yield, but also with higher reaction rates (90% yield in 0.5 hours) 
(Table 1). It is also noticed that the condensation using 5% WO3/ZrO2 
proceeds rapidly and is superior to the different reagents with respect 
to reaction time, temperature and yield. This claim is justified through 
the representative examples, illustrated in Table 1, in which the 
efficiency of 5% WO3/ZrO2 has been compared with those of different 
Lewis/protic acid catalysts (Table 1). The formation of compound 3a 

was evident from the appearance of [M+H]+ peak at m/z 221 in mass 
spectrum (ESI), C-H stretching at 2923 cm-1, C=N stretching at 1727 
cm-1 in IR and the appearance of methyl protons as singlet at δ 2.45 and 
the characteristic proton of quinoxalines at δ 9.29 in 1H NMR.

To establish the generality and scope of our method, various 
phenacyl bromides have been reacted with o-phenylenediamine. 
The results are displayed in Figure 1. As seen, the reaction proceeds 
efficiently and the respective quinoxalines were obtained in good to 
excellent yields and shorter reaction times.

In continuation of our studies [25-30] towards the synthesis of 
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Figure 1: Synthesis of quinoxaline derivatives using 5%WO3/ZrO2.
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novel compounds as useful biologically active compounds, we report in 
this communication an efficient synthesis of quinoxalines derivatives. 
To the best of our knowledge, in the literature there appear no reports 
for the synthesis and screening of quinoxalines derivatives using ZrO2/
WO3. This fact has prompted us to investigate in depth the utility of 5% 
WO3/ZrO2 for the synthesis of quinoxalines. 

The effect of electron releasing and electron with drawing 
substituent on the aromatic ring of phenacyl bromides on the reaction 
was investigated. As Figure 1 demonstrates, electron releasing groups 
and electron withdrawing groups did not affect significantly on the 
yields and the reaction times (Figure 1, entries 2, 3 and 4, 5, 6). Using 
1,2-diamines possessing electron-withdrawing substituent needed 
longer reaction times and the yields were lower (Table 2, entry 10). 

Ease of recycling of the catalyst is one of the most advantages of 
our method. For the reaction of o-phenylenediamine,with phenacyl 
bromide no significant loss of the product yield was observed when 
5%WO3/ZrO2 was used after four times recycling (Table 2) (Scheme 2).

Conclusion
In conclusion, we have successfully synthesized and characterized 

derivatives of substituted quinoxalines using a catalytic amount of 
5%WO3/ZrO2. This simple procedure is efficient and can be applied to a 
wide variety of phenacyl bromides. Shorter reaction times and excellent 
product yields make this catalytic system an alternative method for the 
synthesis of substituted quinoxaline derivatives. Further application 
to explore this simple catalytic system for construction of biological 
molecules is under progress. The remarkable catalytic activity of 
5%WO3/ZrO2 exhibited is convincingly superior to the recently 
reported other catalytic methods with respect to reaction time, amount 
of catalyst used. Easy workup and ready availability of the catalyst makes 
the procedure superior over the existing methods. Environmental 
acceptability, low cost, high yields and recyclability of the 5%WO3/ZrO2 
are the important features of this protocol. Furthermore the present 
protocol is readily amenable to parallel synthesis and generation of 
combinatorial substituted quinoxaline libraries. 
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Scheme 2: Plausible mechanisam for the formation of 2-phenylquinoxaline 3a.

Entry Cycle Time(min) Yield
1 - 30 94
2 2 30 92
3 3 30 84
4 4 30 78
5 5 30 78

Table 2: The results of the condensation of o-Phenylenediamine with phenacyl bromide in the presence of recycled 5%WO3/ZrO2.
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