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Abstract
Each year it has become more and more difficult for healthcare providers to determine if a patient has a pathology 

related to the vertebral column. There is great potential to become more efficient and effective in terms of quality 
of care provided to patients through the use of automated systems. However, in many cases automated systems 
can allow for misclassification and force providers to have to review more causes than necessary. In this study, we 
analyzed methods to increase the True Positives and lower the False Positives while comparing them against state-
of-the-art techniques in the biomedical community. We found that by applying the studied techniques of a data-driven 
model, the benefits to healthcare providers are significant and align with the methodologies and techniques utilized 
in the current research community.

Keywords: Vertebral column; Feature engineering; Probabilistic
modeling; Pattern recognition

Introduction
Over the years there has been an increase in machine learning (ML) 

techniques, such as Random Forrest (RF), Boosting (ADA), Logistic 
(GLM), Decision Trees (RPART), Support Vector Machines (SVM), 
and Artificial Neural Networks (ANN) applied to many medical fields. 
A significant reason this has become the case is the capacity for human 
beings to act as diagnostic tools over time. Stress, fatigue, inefficiencies, 
and lack of knowledge all become barriers to high- quality outcomes.

There have been studies regarding applications of data mining in 
different fields, namely: biochemistry, genetics, oncology, neurology 
and EEG analysis. However, literature suggests that there are few 
comparisons of machine learning algorithms and techniques in medical 
and biological areas. Of these ML algorithms, the most common 
approach to develop nonparametric and nonlinear classifications is 
based on ANNs.

In general, the numerous methods of machine learning that have 
been applied can be grouped into two sets: knowledge-driven models 
and data-driven models. The parameters of the knowledge-driven 
models are estimated based on the expert knowledge of detecting and 
recognizing pathologies of the vertebral column. On the other hand, the 
parameters of data- driven models are estimated based on quantitative 
measures of associations between evidential features within the data. 
The classification models used in pathologies of the vertebral column 
have been SVM.

Studies have shown that ML algorithms are more accurate than 
statistical techniques, especially when the feature space is more 
complex or the input datasets are expected to have different statistical 
distributions [1]. These algorithms have the potential to identify and 
model the complex non-linear relationships between the features of the 
biomedical data set collected by Dr. da Mota, namely: pelvic incidence 
(PI), pelvic tilt (PT), lumbar lordosis angle (LLA), sacral slope (SS), 
pelvic radius (PR), and grade of spondylolisthesis (GOS).

These methods can handle a large number of evidential features that 
may be important in detecting abnormalities in the vertebral column. 
However, increasing the number of input evidential features may lead 
to increased complexity and larger numbers of model parameters, and 
in turn the model becomes susceptible to over fitting due to the curse 
of dimensionality.

This work aims to present medical decision support for those 
healthcare providers who are working to diagnosis pathologies of the 
vertebral column. This framework is comprised of three subsystems: 
feature engineering, feature selection, and model selection.

Pathologies of the vertebral column

Vertebras, invertebrate discs, nerves, muscles, medulla, and 
joints make up the vertebral column. The essential functions of the 
vertebral column are as follows: (i) human body support (ii) protection 
of the nervous roots and medulla spine; and (iii) making the body’s 
movement possible [2].

The structure of the intervertebral disc can be injured due to small 
or several small traumas in the column. Various pathologies can cause 
intense pain, such as disc hernias and spondylolisthesis. Backaches can 
be the results of complications that are caused within this complex 
system. We briefly characterize the biomechanical attributes that 
represent each patient in the data set.

Patient characteristics: Dr. Henrique da Mota collected data on 
310 patients from sagittal panoramic radiographies of the spine while 
at the Centre Medico-Chirurgical de Readaptation des Massues placed 
in Lyon, France [3]. 100 patients were volunteers that had no pathology 
in their spines (labeled as ‘Normal’). The remainder of patients had disc 
hernia (60 patients) or spondylolisthesis (150 patients).

Decision support for orthopedists is automated using ML 
algorithms and techniques of real clinical cases that utilize the above 
biomechanical attributes. Following, we compare many ML models 
evaluated through this study.

Problem statement and standard solutions

Classification refers to the problem of categorizing observations 
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into classes. Predictive modeling uses samples of data for which the 
class is known to generate a model for classifying new observations. We 
are only interested in two possible outcomes: ‘Normal’ and ‘Abnormal’. 
Complex datasets make it difficult not to misclassify some observations. 
However, our goal was to minimize those errors using the receiver 
operating characteristic (ROC) curve. 

Literature suggests using an ordinal data approach for detecting 
reject regions in combinations with SVM. In addition, selecting the 
misclassification costs as follows: Clow cost when classifying a class as 
reject and assign Chigh cost when misclassifying. 

Therefore, Reject=Clow/Chigh=wr is the cost of rejecting (normalized 
by the cost of erring). The method accounts to account for the rejections 
rate rate and the misclassification rate [2]. 

Description of the data

It is useful to understand the basic features of the data in our study. 
Simple summaries about the sample and the measures, together with 
graphical analysis, form a solid basis for our quantitative analysis of 
the vertebral column dataset. We conducted univariate analysis which 
identifies the distribution, central tendency, and dispersion of the data.

The distribution table include the 1st and 3rd quartile, indicating 
25% of the values that the observations demonstrate are less than or 
greater than the values listed (Table 1).

Distributions: Distribution of Biomechanical Features in class is 
specified in Figure 1.

Correlation: A correlation analysis provides insights into the 
independence of the numeric input variables. Modeling often assumes 
independence, and better models will result when using independent 
input variables. Below is a table of the correlations between each of the 
variables (Table 2).

We made use of a Hierarchical dendogram to provide visual clues 
to the degree of closeness between variables [4]. The hierarchical 
correlation dendrogram produced here presents a view of the variables 

of the dataset showing their relationships. The purpose is to efficiently 
locate groupings of variables that are highly correlated. The length of 
the lines in the dendrogram provides a visual indication of the degree of 
correlation. For example, shorter lines indicate more tightly correlated 
variables (Figure 2).

The feature engineering and data replication method

We developed a method which we termed Feature Bayes. This 
method makes use of a probabilistic model from synthetic data creation. 
Additionally, the data has been feature engineered and further refined 
through automated feature selection. In order to maximize prediction 
accuracy we generated 54 additional features. We define a row vector 
as 𝐴=[a1 a2 … a6] using the original six features from the vertebral 
column dataset. N is defined as the number of terms.

The features were constructed as follows:

‘Trim mean 80%’ calculates the mean taken by excluding a 
percentage of data points from the top and bottom tails of a vector as 
such

= ∑ A
x

N
 

ijae                                  (1)

Information theory, ‘Entropy’, is the expected value of the 
information contained in each message received [5] and is generally 
constructed as

6

1
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‘Range’ is known as the area of variation between upper and lower 
limits and is generally defined as

𝐴max – 𝐴min                                                                                         (3)

We developed ‘Standard Deviation of A’ as a quantity calculated to 
indicate the extent of Deviation for a group as a whole,
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 Pelvic_Incidence Pelvic_Tilt Lumbar_Lordosis_Angle Sacral_Slope Pelvic_Radius Degree_Spondylolisthesis
Minimum 26.15 -6.555 14 13.37 70.08 -11.058

1st quarter 45.7 10.759 36.64 33.11 110.66 1.474
Median 59.6 16.481 49.78 42.65 118.15 10.432
Mean 60.96 17.916 52.28 43.04 117.54 27.525

3rd quarter 74.01 21.936 63.31 52.55 125.16 42.81
Maximum 129.83 49.432 125.74 121.43 157.85 418.543

 Class      
Abnormal 145      
Normal 72      

Table 1: Descriptive statistics of sample data

Correlation summary using the 'Pearson' covariance
 pelvic_radius pelvic_tilt degree_spondylolisthesis lumbar_lordosis_angle sacral_slope pelvic_incidence

pelvic_radius 1 0.01917945 -0.04701219 -0.04345604 -0.34769211 -0.2586922
pelvic_tilt 0.01917945 1 0.37008759 0.45104586 0.04615349 0.6307171

degree_spondylolisthesis -0.04701219 0.37008759 1 0.50847068 0.55060557 0.6478843
lumbar_lordosis_angle -0.04345604 0.45104586 0.50847068 1 0.53161132 0.6812879

sacral slope -0.34769211 0.04615349 0.55060557 0.53161132 1 0.8042957
pelvic_incidence -0.25869222 0.63071714 0. 64788429 0.68128788 0.80429566 1

*Note that only correlations between numeric variables are reported

Table 2: Pearson correlation matrix (Sample)
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‘Cosine of A’ was generated to capture the trigonometric function 
that is equal to the proportion of the adjacent side to an acute angle of 
the hypotenuse,

cos A                    (5)

‘Tangent of A’ was generated to capture the trigonometric 
function equal to the proportion of the opposite side over the adjacent 
side in a right triangle,

tan A                   (6)

‘Sine of A’ was generated to capture the trigonometric function 
that is equal to the relationship of the opposite side of a given angle to 
the hypotenuse,

sin A                   (7) 

‘25th Percentile of A’ is the value of vector A such that 25% of the 
relevant population is below that value, 

2525 *
100

th Percentile N =   
                 (8)

Figure 1: Distribution of Biomechanical Features in class.

Figure 2: Hierarchical dendogram of vertebral column (Sample).
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‘20th Percentile of A’ is the value of vector A such that 20% of the 
relevant population is below that value,

2020 *
100

th Percentile N =   
                 (9) 

‘75th Percentile of A’ is the value of vector A such that 75% of the 
relevant population is below that value

 
7575 *

100
th Percentile N =   

               (10)

‘80th Percentile of A’ is the value of vector A such that 80% of the 
relevant population is below that value,

 8080 *
100

th Percentile N =   
               (11)

‘Pelvic Incidence Squared’ was used to change the pelvic incidence 
from a single dimension into an area. Many physical quantities are 
integrals of some other quantity, 

2
1a                  (12) 

For each element of the row vector A we performed a square root 
calculation that yields a definite quantity when multiplied by itself,

i ja                  (13)

For each element of the row vector A we created a ‘Natural Log of 
𝑎i,j’, more specifically a logarithm to the base of e

ln ija                  (14)

‘Sum of pelvic incidence and pelvic tilt’, 
2

1

a
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For each element of the row vector A we created a ‘Cubed’ value 
of 𝑎𝑖j,, 

‘Difference of pelvic incidence and pelvic tilt’,
3
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‘Difference of pelvic incidence and pelvic tilt’, 
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‘Product of pelvic incidence and pelvic tilt’,
2
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‘Sum of pelvic tilt andlumbar lordosis angle’,
3

2
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=
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‘Sum of lumbar lordosis angle and sacral slope’,
4

3

a

n a
n

=
∑                  (20)

‘Sum of pelvic radius and degree spondylolisthesis’,
5

4

a

n a
n

=
∑                  (21)

‘Difference of pelvic tilt and lumbar lordosis angle’,

𝑎2 − 𝑎3                 (22)

‘Difference of lumbar lordosis angle and sacral slope’

𝑎3 – 𝑎4                   (23)

‘Difference of sacral slope and pelvic radius

𝑎4 – 𝑎5 

Difference of pelvic radius and degree spondylolisthesis’,

𝑎5 – 𝑎6                                                                                                 (25) 

Quotient of pelvic tilt and pelvic incidence’, 
2

1

a
a                   (26) 

‘Quotient of lumbar lordosis angle and pelvic tilt’,

 3

2

a
a                   (27) 

‘Quotient of sacral slope and lumbar lordosis angle’,
4

3

a
a                   (28)

‘Quotient of pelvic radius and sacral slope’,
5

4

a
a

                  (29)

‘Quotient of degree spondylolisthesis and pelvic radius’,
6

4

a

n a
n

=
∑                   (30)

‘Sum of elements A’,
6

4

a

n a
n

=
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‘Average of A elements’,

Ax        ...........(32)

‘Median of A elements’,

1
2 2

2

th thn nterm term
Median

   + +   
   =

               (33)

‘Euler’s number raised to the power of ai,j’, 

 ijae                  (34)

Patient data generated with oversampling

The category ‘Normal’ was significantly underrepresented in the 
dataset. We employed the Synthetic minority oversampling technique 
(SMOTE) [6]. We chose the class value ‘Normal’ to work with using 
five nearest neighbors to construct an additional 100 instances.

Algorithm SMOTE (T,N,k)

Input: Number of minority class samples T; Amount of SMOTE 
N%; Number of nearest neighbors k

Output: (N/100) *T synthetic minority class samples

1.  (* If N is less than 100%, randomize the minority class samples as 
only a random percent of them will be SMOTEd*)

2.  If N<100

3.  then Randomize the T minority class samples

4.  T=(N/100) * T

5.  N=100

6.  end if

7.  N=(int)(N/100) (*The amount of SMOTE is assumed to be integral 
multiples of 100.*)

8.  k=Number of nearest neighbors

9.  numattrs=Number of attributes

10.  Sample[][]: array for original minority class samples
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11.  newindex: keeps a count of number of synthetic samples generated, 
initialized to 0

12. Synthetic[][]: array for synthetic samples (*Compute k nearest 
neighbors for each minority class sample only.*)

13.  for i ← 1 to T

14.  Compute k nearest neighbors for I, and save the indices in the 
nnarray

15.  Populate(N, i, nnaray)

16.  end for Populate (N,i, nnarray) (*Function to generate the synthetic 
samples*)

17. while N ≠ 0

18.  Choose a random number between 1 and k, call it nn. This step  
chooses one of the k nearest neighbors of i.

19.  for attr ← 1 to numattrs

20.  Compute: dif=Sample[nnarray[nn]] [attr] – Sample[i] [attr]

21.  Compute: gap=random number between 0 and 1

22.  Synthetic[new index][attr]+gap * dif

23.  end for

24.  newindex++

25.  N=N – 1

26.  end while 

27.  Return (*End of Populate*) 

End of Pseudo-Code. 

Variance captured while increasing feature space 

In an effort to reduce the dimensionality further we opted to use 
principal components analysis (PCA) to choose enough eigenvectors 
to account for 0.95 of the variance of the sub-selected attributes [7]. 
We decided to standardize the data rather than center the data, which 
allows PCA to be computed by the correlation matrix rather than the 
covariance matrix. The maximum number of attributes to include 
through this transformation was 10. We then choose 0.95 for the 
value of variance covered. This allowed us to retain enough principal 
components to account for the appropriate proportion of variance. At 
the completion of this process we retained 288 components. 

Automated feature selection methods 

We utilized a supervised method to select features, a correlation-
based feature subset selection evaluator [7]. This method of evaluation 
takes into account the value of a subset of features by analyzing the 
individual predictive ability of each feature along with the degree of 
sameness between them. The preference is to have low inter-correlation 
while having subsets of features that are highly correlated. Furthermore, 
we required that the algorithm iteratively add the highest correlated 
features with the class given there was not an existing feature in a subset 
that had a higher correlation with the feature being analyzed. We 
determined that we would search the space of features subsets using 
greedy hill climbing improved with a way of retracing. This retracing 
was governed by an environment of consecutive non-improving nodes. 
We set the direction of the search by starting with the empty set of 
attributes and searching forward. Additionally we specified that five 

would be the number of consecutive non-improving nodes to allow 
before terminating the search. This method selected 19 attributes from 
the 60 features. Of those 19 features, only PT and GOS are original 
data inputs, representing approximately 11%; the other 89% are feature 
engineered (Table 3).

Evaluation and classifier

We used the receiver operator characteristic curves (ROC) which 
compare the false positive rate to the true positive rate. We can access 
the trade-off of the number of observations that are incorrectly 
classified as positives against the number of observations that are 
correctly classified as positives.

Area Under the Curve’ (AUC) is the accuracy or total number of 
predictions that were correct,

Accuracy=True positive+True Negative/True Positive+False 
Negative+False Positive+True Negative

The misclassification rate or the error rate is defined as: Error 
rate=1-accuracy

We use other metrics in conjunction with the error rate to help 
guide the evaluation process,

namely Recall, Precision, False Positive Rate, True Positive Rate, 
False Negative Rate, and F-Measure [8].

Recall is the Sensitivity or True Positive Rate and demonstrates the 
ratio of cases that are positive and correctly identified,

Recall=True positive/True Positive+False Negative

The False Positive Rate is defined as the ratio of cases that were 
negative and incorrectly classified as positive,

False Positive Rate=False Positive/False Positive+True Negative

The True Negative Rate or Specificity is defined as the ratio of cases 
that were negative and classified correctly,

Number of Folds(%) Attribute
10 80th Percentile of A
10 Product of PI and PT
10 Sum of PR and GOS
10 PR Cubed
10 e pelvic tilt
10 e pelvic radius
10 e degree spondylolisthesis
30 PT
30 25th Percentile of A
60 Quotient of PT and PI
70 Square root of PT
90 GOS
90 Range of elements in A
100 Standard Deviation of elements A
100 20th Percentile of A
100 Sum of PR and GOS
100 Difference of PR and GOS
100 Quotient of PR and GOS
100 GOS Cubed

Table 3: Evaluation mode: 10 fold cross validation
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True Negative Rate=True Negative/False Positive+True 
Negative

The False Negative Rate is the proportion of positive cases that 
were incorrectly classified as negative,

False Negative Rate=False Negative/True Positive+False 
Negative

Precision is the ratio of the positive cases that were predicted and 
classified correctly,

Precision=True positive/True positive+False Positive

F-Measure is computed using the harmonic mean and allows some 
average of the information retrieval precision and recall metrics. The 
higher the F-Measure value, the higher classification quality,

F-Measure=2(Precision × Recall/Precision+Recall)

We simplified the task for classification by using a Naïve Bayes 
classifier which assumes attributes have independent distributions, and 
thereby estimate

 P (d/c j)=p (d1 | cj) x p (d2 | cj) x … x p (dn | cj)

Essentially this is determining the probability of generating instance 
d given class cj. The naïve bayes classifier is often represented as the 
following graph which states that each class causes certain features with 
a certain probability [9] (Figure 3).

In order to emphasize the benefits of the incorporation of feature 
engineering, feature selection, and PCA, we referenced prior research 
using two standard learning models and the rejoSVM classifier [2]. All 
training and testing was uniformly applied as before.

Furthermore, we abandoned SVM as a base and instead choose to 
show the value of incorporating our methods within a simple Naïve 
Bayes algorithm [10-13]. Moreover, methods such as Feature Bayes may 
be used as a decision support tool for healthcare providers, particularly 
for those providers that have minimal resources or limited access to an 
ongoing professional peer network [14-16] (Tables 4 and 5).

Methods that produce high true positives and low false positives 
are ideal for medical settings. These allow healthcare providers to have 
a higher degree of confidence in the diagnoses provided to patients 
[17,18]. Given a small dataset, which is typical of biomedical datasets, 
feature Bayes helps to maximize the predictive accuracy that could 
benefit the medical expert in future patient evaluations [19,20] (Table 6).

Conclusion
The analysis of the vertebral column data allowed us to incorporate 

feature engineering, feature selection, and model evaluation 
techniques. Given these new methods, we were able to provide a more 
accurate way of classifying pathologies. The feature Bayes method 
proved to be valuable by obtaining higher true positives and lower 
false positives than traditional or more current methods such as revo 
SVM. This makes it a useful method as a biomedical screening tool to 
aide healthcare providers with their medical decisions. Further studies 
should be developed surrounding the analysis of the feature Bayes 
method. Moreover, a comparison of ensemble learning techniques 
using feature Bayes could prove beneficial.
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