

Research Article

A Dimensionless Analysis of Stress Distribution for Hydrostatic Tension in an Orthotropic Plate

Hsien-Liang Yeh1* and Hsien-Yang Yeh2

¹Department of Civil and Ecological Engineering, I-Shou University, Kaohsiung City 84001, Taiwan ²Department of Mechanical Engineering, California State University, Long Beach, CA, USA

Abstract

The effect of lamina material properties on the stress distribution of the orthotropic composite plate containing a circular cutout under hydrostatic tension is investigated. Based on the generalized Hooke's law, the generalized plane stress condition and the complex variable method, a dimensionless analysis is used to evaluate the influence of various elastic moduli E_1 , E_2 , G_{12} and v_{12} on the stress distribution along the boundary of the cutout in the composite plate under hydrostatic tension. The results obtained from this dimensionless analysis provide a set of general design guidelines for structural laminates with high precision requirements in the engineering applications.

Keywords: Hydrostatic tension; Stress distribution; Orthotropic plate; Complex variable; Composite materials

Introduction

Composite materials consist of various fibrous reinforcements coupled with a compatible matrix to achieve superior structural performance. The selection of composite materials for specific applications is generally determined by the physical and mechanical properties of the materials, evaluated for both function and fabrication [1]. Knowledge of stress distributions in anisotropic materials is very important for proper use of these new high-performance materials in structural applications [2].

Kuwamura [3] analyzed the stresses around the circular cutout by means of Ikeda's formula in consideration of orthotropic elasticity of the woods, which revealed that the stresses distribution around the circular hole is nearly equal to that of an isotropic plate. Selivanov [4] studied the time variation in the stresses around an elliptic hole in a composite plate. Kumar et al. [5] presented an approximate solution in the form of a polynomial for the normal stress distribution adjacent to a class of optimum holes in symmetrically laminated infinite composite plates under uniaxial loading. Giare and Shabahang [6] used a finite element analysis to calculate the stress distribution around a hole in a finite isotropic plate reinforced by composite material. Tsai et al. [7] developed a novel procedure for predicting the notched strengths of composite plates with a center hole. And the stress distribution of a composite plate with a center hole is obtained by a finite element analysis.

In this paper, the effect of lamina material properties on the stress distribution of the orthotropic composite plate containing a circular cutout under hydrostatic tension is investigated. Based on the generalized Hooke's law, the generalized plane stress in an orthotropic composite plate and the complex variable method, a dimensionless analysis is used to evaluate the influence of various elastic moduli E_1 , E_2 , G_{12} and v_{12} on the stress distribution along the boundary of the circular cutout in the composite plate under hydrostatic tension.

Tangential Stresses on the Boundary of the Circular Opening

The stress-strain distribution of an infinite anisotropic plate containing a through-the-thickness cutout has been derived using a complex variable method [8-10]. For an orthotropic plate subjected to

equal tensile stress p in two principal directions which are applied at a considerable distance from the circular opening as shown in Figure 1 (and this is equivalent to hydrostatic tension in plane xy). The normal stress component σ_{θ} for an element tangential to the opening is [9]

$$\sigma_{\theta} = p \frac{E_{\theta}}{E_1} \left[-k + k \left(k + n \right) \cos^2 \theta + (1+n) \sin^2 \theta \right]$$
(1)

where

$$k = \sqrt{\frac{E_1}{E_2}}$$
(2)

n =
$$\sqrt{\frac{E_1}{G_{12}} - 2 v_{12} + 2 \sqrt{\frac{E_1}{E_2}}}$$
 (3)

The θ is the polar angle measured from the x-axis; E_{θ} is the Young's modulus in tension (compression) along the direction tangent to the opening contour, which is related to elastic constants in the principal directions by the formula

$$\frac{1}{E_{\theta}} = \frac{\sin^4\theta}{E_1} + \left(\frac{1}{G_{12}} - \frac{2\nu_{12}}{E_1}\right)\sin^2\theta\cos^2\theta + \frac{\cos^4\theta}{E_2} \quad (4)$$

For an isotropic plate [9]

 σ

$$r_{\theta} = 2p$$
 (5)

A Dimensionless Analysis Model for Evaluation of the Normal Stress σ_{a}

Consider the orthotropic plate containing a circular hole under hydrostatic tension. For a dimensionless analysis, the three lamina

*Corresponding author: Dr. Hsien-Liang Yeh, Department of Civil and Ecological Engineering, I-Shou University, Kaohsiung City 84001, Taiwan, Tel:886-7-6577711ext.3315; E-mail: hlyeh@isu.edu.tw

Received May 21, 2014; Accepted July 05, 2014; Published July 11, 2014

Citation: Yeh HL, Yeh HY (2014) A Dimensionless Analysis of Stress Distribution for Hydrostatic Tension in an Orthotropic Plate. J Aeronaut Aerospace Eng 3: 129. doi:10.4172/2168-9792.1000129

Copyright: © 2014 Yeh HL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Page 2 of 4

material constants E_1, E_2 and G_{12} are represented by two dimensionless ratios E_2/E_1 and G_{12}/E_1 . Totally, the lamina material has three parameters $E_2/E_1, \ G_{12}/E_1$ and ν_{12} . For an unidirectional lamina with different values of $E_2/E_1, \ G_{12}/E_1$ and ν_{12} , the normal stress component σ_θ of the orthotropic plate under the hydrostatic tension will be varied and provided different values.

Various cases of different combinations of the three material parameters are considered in this study. In general case, the ranges of E_2/E_1 and G_{12}/E_1 are between zero and one, the ranges of v_{12} are between 0 and 0.6. For a lamina with given material properties E_2/E_1 , G_{12}/E_1 and v_{12} , the normal stress component σ_{θ} of the orthotropic plate under the hydrostatic tension can be evaluated.

Results and Discussion

In the (Figures 2-4), the bold solid line represents the circular hole and the bold dotted line shows the stress distribution σ_{θ} in an isotropic plate subjected to identical load as in an orthotropic plate. The stress distribution for an orthotropic plate is symmetrical with respect to the opening center. Thus, the variation of the stress distribution $_{\theta}$ is considered only in the range of $0^{\circ} \le \theta \le 180^{\circ}$ for an orthotropic plate. In an isotropic plate given p=100 MPa, then calculated from Equation (5), the constant stress σ_{θ} is 200 MPa. Therefore, the stress concentration factor in an isotropic plate is $S_c=2.0$. It is well known that the stress concentration factor for a circular cutout in the isotropic thin plate under uni-axial tensile load is "three". However, in this study, tensile stresses in two perpendicular directions equal to p are applied in the thin plate with a circular cutout, therefore, through the linear superposition, it is found the stress concentration factor for this isotropic plate is $S_c=2.0$.

In Table 1 given p=100 MPa, $E_1=204$ GPa, $E_2/E_1=0.6$ and $G_{12}/E_1=0.4$, the variation of the stress σ_{θ} with respect to the polar angle θ and v_{12} is the following:

With v_{12} =0.2, 0.4, and 0.6, the minimum corresponding stresses σ_{θ} are 187.28 MPa, 177.83 MPa, and 167.93 MPa at θ =90° respectively, and the maximum stresses σ_{θ} are 211.62 MPa, 221.17 MPa, and 232.14 MPa at θ =50° as well as θ =130° respectively. Also, the stress concentration factors are S_c=2.12, 2.21, and 2.32 respectively, for orthotropic case.

Table 1 shows that within the ranges of the polar angle $0^{\circ} \le \theta \le 20^{\circ}$, $70^{\circ} \theta \le 110^{\circ}$, and $160^{\circ} \le \theta \le 180^{\circ}$, the stress σ_{θ} decreases along with the increased values of ν_{12} . But, within the ranges of the polar angle $30^{\circ} \le \theta \le 60^{\circ}$ and $120^{\circ} \le \theta \le 150^{\circ}$, the stress $_{\theta}$ increases along with the increased values of ν_{12} . A summary of Table 1 is shown in Figure 2.

In Table 2 given p=100 MPa, E₁=204 GPa, E₂/E₁=0.6 and ν_{12} =0.4, the variation of the stress σ_{θ} with respect to the polar angle θ and G₁₂/E₁ is following:

With $G_{12}/E_1=0.2$, 0.4, 0.6, 0.8 and 1.0, the minimum corresponding

Figure 3: The normal stress component $\sigma_evs.$ θ and G_{12}/E_1 for p=100 MPa,E_1=204 GPa, E_2/E_1=0.6, and v_{12} =0.4.

J Aeronaut Aerospace Eng ISSN: 2168-9792 JAAE, an open access journal

Citation: Yeh HL, Yeh HY (2014) A Dimensionless Analysis of Stress Distribution for Hydrostatic Tension in an Orthotropic Plate. J Aeronaut Aerospace Eng 3: 129. doi:10.4172/2168-9792.1000129

Page 3 of 4

Figure 4: The normal stress component $\sigma_{_0}vs.$ θ and E_2/E_1 for p=100 MPa,E_1=204 GPa, G_{12}/E_1=0.6, and v_{12} =0.4.

σ _e (MPa)								
θ ν ₁₂	0.2	0.4	0.6					
0°	190.1468	182.8274	175.1573					
10°	192.0270	185.9280	179.3790					
20°	197.2014	194.6964	191.6553					
30°	204.1280	207.0080	209.7919					
40°	210.0384	218.0841	227.1022					
50°	211.6244	221.1711	232.1421					
60°	207.1710	212.6519	218.5025					
70°	198.5809	196.9797	194.7377					
80°	190.5158	183.1520	175.1465					
90°	187.2796	177.8302	167.9282					
100°	190.5158	183.1520	175.1465					
110°	198.5809	196.9797	194.7377					
120°	207.1710	212.6519	218.5025					
130°	211.6244	221.1711	232.1421					
140°	210.0384	218.0841	227.1022					
150°	204.1280	207.0080	209.7919					
160°	197.2014	194.6964	191.6553					
170°	192.0270	185.9280	179.3790					
180°	190.1468	182.8274	175.1573					

Table 1: The normal stress component $\sigma_{_{0}}$ vs. θ and $\nu_{_{12}}$ for p=100 MPa,E₁=204 GPa, E₂/E₁=0.6, and G₁₂/E₁=0.4.

stresses σ_{θ} are 176.16 MPa at θ =50° as well as =130°, and other minimum corresponding stresses σ_{θ} are 177.83 MPa, 156.61 MPa, 145.03 MPa and 137.69 MPa at θ =90° respectively, and the maximum stresses σ_{θ} are 231.32 MPa at θ =90°, 221.17 MPa, 246.09 MPa, 262.21 MPa and 273.54 MPa at θ =50° as well as θ =130° respectively. Also, the stress concentration factors are S_c =2.31, 2.21, 2.46, 2.62, and 2.73 respectively, for orthotropic case.

Table 2 shows that within the ranges of the polar angle $0^{\circ} \le \theta \le 20^{\circ}$, $70^{\circ} \le \theta \le 110^{\circ}$ and $160^{\circ} \le \theta 180^{\circ}$ the stress σ decreases along with the increased values of G_{12}/E_1 . But, within the ranges of the polar angle $30^{\circ} \le \theta \le 60^{\circ}$ and $120^{\circ} \le \theta = 150^{\circ}$, the stress σ_{θ} increases along with the increased values of G_{12}/E_1 . A summary of Table 2 is shown in Figure 3.

σ _e (MPa)							
θ G ₁₂ / E ₁	0.2	0.4	0.6	0.8	1.0		
0°	224.2627	182.8274	166.3872	157.4178	151.7376		
10°	218.4431	185.9280	171.6972	163.6331	158.4209		
20°	204.4044	194.6964	187.6255	182.8601	179.4900		
30°	189.1800	207.0080	212.5897	214.8970	215.9955		
40°	178.6255	218.0841	238.2099	250.5184	258.8396		
50°	176.1625	221.1711	246.0954	262.2070	273.5433		
60°	183.5657	212.6519	225.2655	232.1585	236.4414		
70°	200.5763	196.9797	191.3849	186.9838	183.6381		
80°	221.2496	183.1520	165.6352	155.5200	148.9160		
90°	231.3231	177.8302	156.6061	145.0266	137.6935		
100°	221.2496	183.1520	165.6352	155.5200	148.9160		
110°	200.5763	196.9797	191.3849	186.9838	183.6381		
120°	183.5657	212.6519	225.2655	232.1585	236.4414		
130°	176.1625	221.1711	246.0954	262.2070	273.5433		
140°	178.6255	218.0841	238.2099	250.5184	258.8396		
150°	189.1800	207.0080	212.5897	214.8970	215.9955		
160°	204.4044	194.6964	187.6255	182.8601	179.4900		
170°	218.4431	185.9280	171.6972	163.6331	158.4209		
180°	224.2627	182.8274	166.3872	157.4178	151.7376		

Table 2: The normal stress component σ_{θ} vs. θ and G_{12}/E_1 for p=100 MPa, E_1 =204 GPa, E_2/E_1 =0.6, and v_{12} =0.4.

σ _e (MPa)								
θ E_2/E_1	0.2	0.4	0.6	0.8	1.0			
0°	158.6111	163.7024	166.3872	168.1069	169.3123			
10°	163.3198	168.7368	171.6972	173.6703	175.1163			
20 °	180.2301	184.1946	187.6255	189.9839	191.7611			
30°	204.6600	210.0193	212.5897	214.0722	214.9998			
40 °	242.4456	240.8558	238.2099	235.6879	233.4666			
50°	277.4915	257.6026	246.0954	238.6573	233.4666			
60°	268.7737	237.4698	225.2655	218.8828	214.9998			
70 °	200.1263	192.3720	191.3849	191.4572	191.7611			
80°	132.0207	155.5936	165.6352	171.3639	175.1163			
90°	107.4517	142.6084	156.6061	164.3424	169.3123			
100°	132.0207	155.5936	165.6352	171.3639	175.1163			
110°	200.1263	192.3720	191.3849	191.4572	191.7611			
120°	268.7737	237.4698	225.2655	218.8828	214.9998			
130°	277.4915	257.6026	246.0954	238.6573	233.4666			
140°	242.4456	240.8558	238.2099	235.6879	233.4666			
150°	204.6600	210.0193	212.5897	214.0722	214.9998			
160°	180.2301	184.1946	187.6255	189.9839	191.7611			
170°	163.3198	168.7368	171.6972	173.6703	175.1163			
180°	158.6111	163.7024	166.3872	168.1069	169.3123			

Table 3: The normal stress component $\sigma_{_{\!\theta}}vs.$ θ and $E_{_2}/E_{_1}$ for p=100 MPa,E,=204 GPa, $G_{_{\!12}}/E_{_1}$ =0.6, and $v_{_{\!12}}$ =0.4.

In Table 3 given p=100 MPa, E_1 =204 GPa, G_{12}/E_1 =0.6 and ν_{12} =0.4, the variation of the stress σ_{θ} with respect to the polar angle θ and E_2/E_1 is following:

With $E_2/E_1=0.2$, 0.4, 0.6, 0.8 and 1.0, the minimum corresponding stresses σ_{θ} are 107.45 MPa, 142.61 MPa, 156.61 MPa 164.34 MPa, and 169.31 MPa at $\theta=90^{\circ}$ respectively, and the maximum stresses σ are 277.49 MPa, 257.60 MPa, 246.09 MPa, 238.66 MPa and 233.47 MPa at $\theta=50^{\circ}$ respectively. Moreover, for $E_2/E_1=1.0$, the minimum stress σ occurred at $\theta=0^{\circ}$ as well as $\theta=180^{\circ}$ and the maximum stress σ_{θ} occurred at $\theta=40^{\circ}$, $\theta=130^{\circ}$ and $\theta=140^{\circ}$ as well. Also, the stress

concentration factors are S_=2.77, 2.58, 2.46, 2.39, and 2.33 respectively, for orthotropic case.

Table 3 shows that within the ranges of the polar angle $0^{\circ} \le \theta \le 30^{\circ}$, $80^{\circ} \le \theta \ 100^{\circ}$ and $150^{\circ} \le \theta \le 180^{\circ}$, the stress σ_{θ} increases along with the increased values of E_2/E_1 respectively. But, in the ranges of the polar angle $40^{\circ} \le \theta \le 60^{\circ}$ and $120^{\circ} \le \theta \le 140^{\circ}$, the stress σ_{θ} decreases along with the increased values of E_2/E_1 . As for the polar angles $\theta=70^{\circ}$ as well as $=110^{\circ}$, with the values of $0.2 \le E_2/E_1 \le 0.6$, the stress σ_{θ} decreases along with the increased values of E_2/E_1 , but for the values of $0.6 \le E_2/E_1 \le 1.0$, the stress σ_{θ} increases along with the increased values of E_2/E_1 . A summary of Table 3 is shown in Figure 4.

Conclusions

The effect of lamina material properties on the stress distribution of the orthotropic composite plate containing a circular cutout under hydrostatic tension is presented.

First of all, given fixed material parameters for $E_1=204$ GPa, $E_2/E_1=0.6$, and $G_{12}/E_1=0.4$ Table 1 indicates that for the values of $0.2 \le v_{12} \le 0.6$, within the ranges of the polar angle $0^\circ \le \theta \le 50^\circ$ and $90^\circ \le \theta \le 130^\circ$, the stress σ increases with respect to the increased values of the polar angle θ , but within the ranges of the polar angle $50^\circ \le \theta \le 90^\circ$ and $130^\circ \le \theta \le 180$ the stress σ_{θ} decreases with the increased values of the polar angle θ .

Second, given fixed material parameters for $E_1=204$ GPa, $E_2/E_1=0.6$, and $v_{12}=0.4$ Table 2 indicates that for the value of $G_{12}/E_1=0.2$, within the ranges of the polar angle $0^\circ \le \theta \le 50^\circ$ and $90^\circ \le \theta \le 130^\circ$, the stress σ_{θ} decreases with respect to the increased values of the polar angle θ , but within the ranges of the polar angle $50^\circ \le \theta \le 90^\circ$ and $130^\circ \le \theta = 180^\circ$ the stress σ_{θ} increases along with the increased values of the polar angle θ .

As for the values of $0.4 \le G_{12}/E_1 \le 1.0$, within the ranges of the polar angle $0^\circ \le \theta = 50^\circ$ and $90^\circ \le \theta \le 130^\circ$, the stress σ_{θ} increases with the increased values of polar angle θ , but within the ranges of the polar angle $50^\circ \le \theta \le 90^\circ$ and $130^\circ \le \theta = 180^\circ$ the stress σ_{θ} decreases with respect to the increased values of the polar angle θ .

Third, given fixed material parameters for $E_1=204$ GPa, $G_{12}/E_1=0.6$, and $\nu_{12}=0.4$ Table 3 indicates that for the values of $0.2 \leq E_2/E_1 \leq 1.0$, within the ranges of the polar angle $0^\circ \leq \theta \leq 50$ and $90^\circ \leq \theta \leq 130^\circ$ the stress σ_θ increases with respect to the increased values of the polar angle θ , but within the ranges of the polar angle $50^\circ \leq \theta \leq 90^\circ$ and $130^\circ \leq \theta \leq 180$ the stress σ_θ decreases along with the increased values of the polar angle θ .

Fourth, it is well known that for fiber reinforced composite laminated plates, the Poisson's ratio can be negative values. However, this case is not discussed/analyzed in the present study; such investigation will be included in the future research works.

The results obtained from this dimensionless analysis provide a set of general design guidelines for structural laminates with high precision requirements in the engineering applications.

References

- 1. Niu, Michael CY (1992) Composite Airframe Structures. Conmilit Press Ltd, USA.
- 2. Sadd MH (2009) Elasticity, 2 edn. Elsevier Inc., USA.
- Kuwamura H (2010) Splitting of Wood by Pressure in a Circular Hole: Study on Steel-Framed Timber Structures part 5. Journal of Structural and Construction Engineering, 75: 175-184.
- Selivanov MF (2010) Influence of the Viscoelastic Properties of a Composite on the Stress Distribution around an Elliptic Hole in a Plate. International Applied Mechanics, 46: 799-805.
- Kumar RR, Rao GV, Suresh KS (1994) Normal Stress Distribution adjacent to Optimum Holes in Composite Plates.Composite Structures, 29: 393-398.
- Giare GS, Shabahang R (1989) Reduction of Stress Concentration around the Hole in an Isotropic Plate Using Composite Materials. Engineering Fracture Mechanics 32: 757-766.
- Tsai KH, Hwan CL, Lin MJ, Huang YS (2012) Finite element based point stress criterion for predicting the notched strengths of composite plates. Journal of Mechanics, 28: 401-406.
- Sih GC, Paris PC, Irwin GR (1965) On Crack in Rectilinearly Anisotropic Bodies. International Journal of Fracture, 1: 189-203.
- 9. Lekhnitskii SG (1968). Anisotropic Plates. USA.
- 10. Tan SC (1994) Stress Concentrations in Laminated Composites. USA.