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Introduction
Transition metals and their oxides are widely used as both catalysts 

and catalytic supports for C–H bond activation [1-5]. Nonetheless, these 
materials have not yet been fully investigated from a comprehensive 
mechanistic viewpoint [6]. The CH4 + MO+→ M++CH3OH reaction 
presents one of the simplest and earliest examples of C–H bond 
activation by transition metal compounds. Prior experimental studies 
have focused on gas-phase reactions of methane with first-row 
transition-metal oxide ions [2-10]. Considerable theoretical studies on 
these reactions have been conducted by Yoshizawa’s group [11-13], 
who also performed the theoretical study on the reaction of FeO+ with 
benzene [14,15]. In recent years, Andrew’s group has reacted some of 
the group IV transition metal atoms with acetonitrile; although the 
observed experimental product CH2=Zr(H)NC was assigned by matrix 
isolation infrared spectroscopy and isotopic substituted experiments 
combing with DFT frequency analysis, the detailed reaction mechanism 
was not took into account [16]. Further DFT theoretical calculations 
on the spin inversion process of the reaction pathway were reported 
by Jin et al. who considered two-state reactivity and spin-forbidden 
chemical reactions [17]. Besides the reactions of pure transition metal 
compounds with methane and acetonitrile, some small hydrocarbons 
such as C2H2, C2H4, and C6H6 [18-20] and halohydrocarbons such as 

CH3Cl [21-24] have also been reported. However, the reactions of pure 
transition metal oxides with halogenated aromatic hydrocarbons have 
received very little attention.

Halogenated benzene compounds, one of the larger groups of 
anthropogenic materials, are widely used in the chemical and electronics 
industries. However, most of these compounds are hazardous organic 
pollutants because of their environmental impact and noxious effects, 
and are frequently found in various waste oils and other organic liquids. 
Recently, selective C–H activation with halo [25-27], cynao [28,29], 
and hydroxo [30-32] functional groups has attracted much attention 
in organic synthesis due to the possibility of incorporating versatile 

Abstract
The reaction paths for the conversion of chlorobenzene to p-chlorophenol are presented in detail using iron 

and manganese monoxides via the hydroxo insertion intermediate, HO–M–C6H4Cl (M=FeO, MnO). The molecular 
geometries and electronic structures for the reactants, intermediates, transition states, and products were optimized 
and analyzed in detail by density functional methods. The reaction potential surface profiles indicate that the metal-
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intrinsic reaction co-ordinate (IRC) analyses indicated that no crossover point was searched for between the high-spin 
and low-spin potential energy surfaces; thus, no spin crossing was found between these two states potential energy 
surfaces. The low-spin potential energy surface lies above the high-spin one for the entire reaction pathway. Our 
theoretical study on the possible reaction pathways for the conversion of chlorobenzene to p-chlorophenol will also 
be useful for analyzing the catalytic functions of C–H bond activation and metal–carbon bond formation by transition 
metal complexes.

Stable hydroxo intermediates formed during the conversion of chlorobenzene promoted by transition-metal monoxides (M represents 
the Fe or Mn atom).
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functional groups. In these reactions, the functional groups remain 
unreactive under suitable conditions, thereby allowing the activation of 
the targeted C–H bonds to form more complicated organic molecules. 
In addition, hydroxylation of the halogenated benzenes is biologically 
important, because it forms p-substituted hydroxyhalobenzenes that are 
mostly found in mosquito larva and water extracts. Recently, group IX 
metals have been extensively reported for the activation of C–H bonds 
in the presence of carbon halide bonds. Milstein described an exclusive 
activation of ortho C–H bonds in chloro- and bromobenzene via the 
cationic pincer complex [(PNP*)Ir]+ (PNP,′-bis(di--butylphosphino)-
2,6-diaminopyridine) [33]. Kinetic preference for C–H activation and 
thermodynamic preference for C–Cl activation for chlorobenzene 
(PhCl) was observed by Ozerov [34] by using an analogous (PNP)IrI 
system and also in related DFT calculations by Hall [35].

In this paper, we report a theoretical study of the reactions of 
neutral MnO and FeO with chlorobenzene, taking spin multiplicities 
into consideration. The reaction intermediates and the energetics 
along the reaction pathway are computed and analyzed in detail. Our 
theoretical analysis on the direct hydroxylation of chlorobenzene will 
help the researchers in the fields of catalysis chemistry and bioinorganic 
chemistry.

Computational Methods
The computations were performed using the Gaussian 09 ab initio 

program package [36]. The 6-311++G(d, p) all-electron basis sets were 
used for all atoms [37,38]. To select an appropriate functional, different 
functionals (including B3LYP [39-41], M06 [42], M062X [42] and M11 
[43]) were tested by calculating the M–O bond lengths and the M–O 
stretching vibrational frequencies of all first-row transition-metal 
monoxides (M=Sc to Cu). The results indicated that both wB97XD 
and B3LYP demonstrated the best results. Since B3LYP is a frequently 
reported functional, it was chosen to optimize the structures of the 
molecules under investigation. The first structures to be optimized were 
the equilibrium structures of PhCl, MnO, and FeO monomers, reactant 
complexes (PhCl)MO, hydroxo intermediates ClPh(MOH), product 
complexes, and their transition states with different multiplicities. 
Complete optimization of the molecular geometries was done with 
all stationary points. The harmonic vibrational frequencies of all the 
species were calculated with analytic second derivatives at the same 
level. This confirms that each stationary point is a local minimum or is 
a saddle point from systematic vibrational analyses of intrinsic reaction 
co-ordinates (IRCs) [44,45] and that it evaluates the zero-point 
vibrational energies (ZPVE). Each transition state was traced from 
a transition state toward both reactant and product directions along 
the imaginary mode of vibration using the algorithm developed by 
Gonzalez and Schlegel [46] in the mass-weighted internal coordinate 
system. Each IRC was constructed from 50 to 100 steps.

Results and Discussion
Potential energy diagram of the reaction between MO and 
C6H5Cl

DFT/B3LYP calculations were performed on the potential reaction 
products. Figures 1 and 2 shows the computed profiles of the potential 
energy surfaces for the reaction of transition metal monoxides with 
chlorobenzene in both the quartet and sextet states for MnO and in 
both the triplet and quintet states for FeO. Every possible computed 
structure of all intermediates and transition states is also displayed in 
Figures S1 and S2 (Provided in supplementary information). From 
the figures, we conclude that the chlorobenzene–p-chlorophenol 
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Figure 1: Potential energy diagram (including zero-point energy) along the 
reaction pathway, FeO+C6H5Cl→Fe+HOC6H4Cl, in the quintet states. Relative 
energies are in kcal/mol.

reaction is a two-step reaction: in the first step, the compound passes 
through a transition state (TS1) to form a hydroxyl intermediate (HO-
M-C6H4Cl); in the second step, another transition state (TS2) forms 
that leads to the product. Figure 1 shows that the computed potential 
energy profiles of the quintet states have lower energy than the triplet 
states for FeO. Figure 2 indicates that the energies of the sextet states 
are below that of the quartet states during the entire reaction process. 
All the triplet states lie above the quintet ones; therefore, we discuss 
only the quintet states here. The activation energies required to form 
TS1 from the reactant are 15.7 kcal/mol for MnO and 20.2 kcal/mol 
for FeO along the sextet and quintet states of the reaction coordinates. 
Two stable hydroxyl intermediates are also optimized. Notably, no 
spin crossing was detected for the entire reaction. With the help of 
B3LYP computation, the overall reaction is predicted to be exothermic 
for MnO, with the release of 4.4 kcal/mol of energy. In contrast, the 
reaction is endothermic for FeO, with the required energy being 14.4 
kcal/mol.

IRC analyses

As shown in Figures 3-5, the quintet-state IRC analysis can be used 
to investigate the reaction intermediates and transition states for the 
FeO system. We begin with by investigating the first step-reaction using 
IRC analysis in which the reactant complex forms the intermediate 
through TS1. This first step-reaction can be viewed as a 1,3-hydrogen 
migration (Figure 1). This is the most important step for cleaving 
p-hydrogen that migrates to oxygen and finally forms a hydroxy 
intermediate, which combines with OH and C6H4Cl ligands. The first 
step-reaction in the quintet state has been discussed in detail in Figure 
3, in which we present the change in the geometrical parameters during 
the reaction. The IRC was started from TS1 (s=0), which exhibits a Cs 
structure with an imaginary vibrational mode of 1678i cm-1, toward 
both the reactant (s<0) and product (s>0) directions. In principle, both 
directions would lead to an energy minimum in the reactant or product 
“valleys.” Unfortunately, the IRC ended before the true structure of the 
reactant complex could be acquired, although the terminal energy is 
very close to that of the reactant complex. However, this IRC analysis 
is good enough to increase our understanding of the reaction pathway.

The most important first step-reaction along the reaction pathway 
is discussed in detail in Figure 3a, in which the migrating hydrogen 
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migration of the H atom. It is obvious that the Fe–H distance exhibits an 
interesting feature; the distance reaches the minimum value (1.78 Å) in 
TS1. This means that there is an orbital overlap between the migrating 
hydrogen atom and the Fe atom in the vicinity of TS1. Therefore, the Fe 
atom must play an essential role in C–H bond dissociation. In addition, 
the Fe–O bond length does not change very much through the entire 
process.

Next, let us look at the change in the bond angle for the first step-
reaction. In Figure 3b, the change in the C–Fe–O angle exhibits an 
interesting feature: the angle keeps changing and reaches the minimum 
value (75°) in TS1. The C–H bond begins to dissociate at s=-0.6 and 
the O–H bond distance is nearly constant (0.96 Å) after passing s=1.5. 
Therefore, we consider that H-atom migration happens in the range 
-0.6<s<1.5. The activation barrier for the first step-reaction clearly 
derives from C–H bond dissociation and the C–Fe–O strain energy. 
Hence, the potential energy change would result from the strain of the 
C–Fe–O angle inside the region s<-0.6 and s>1.5. Bending of the C–
Fe–O angle would play a supportive part in the C–H bond dissociation 
and O–H bond formation.

After discussing the first step-reaction of the reaction pathway, let 
us now look at the second step-reaction. Here, the intermediate forms 
the product through TS2, which can be viewed as 1,2-p-chlorophenyl 
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Figure 3: Fe compound potential energies along the quintet IRC (a) from 
the reactant complex to the hydroxo intermediate and (b) from the hydroxo 
intermediate to the product complex.
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Figure 4: Change of internal coordinates for concerted C–H bond dissociation 
along the quintet IRC from the reactant complex to the hydroxo intermediate. 
Atomic distances are in Å and bond angles are in degrees. atom interacts not only with the C and O atoms, but also with the Fe 

atom to some extent. The Fe atom can significantly contribute to the 
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migration on the hydroxy intermediate (Figure 4). The IRC was started 
from TS2 (s=0), which exhibits a C1 structure with an imaginary 
vibrational mode of 416i cm-1, toward both the intermediate (s<0) and 
product complex (s>0) directions. Fortunately, this IRC analysis was 
successful. The most significant aspect in the second step-reaction is 
the dissociation of the Fe–C bond and formation of the C–O bond.

We similarly investigated the details of the MnO and C6H5Cl reaction 
process by using the IRC analysis method. Because all the quartet states 
lie above the sextet ones, we discuss only the sextet states here.

To begin with, we first take a look at the detailed IRC analyses. 
The sextet-state IRC analysis is correctly connected by the reaction 
intermediates and transition states, as can be seen in Figure 6. Firstly, 
we consider the IRC analysis for the first step-reaction, which involves 
the transition of the reactant complex to the intermediate through 
TS1. This step-reaction can be viewed as 1,3-hydrogen migration. This 
is the most important step for cleaving p-hydrogen that migrates to 
oxygen and finally forms the hydroxy intermediate made of OH and 
C6H4Cl ligands (Figure 7). The IRC was started from TS1 (s=0), which 
exhibits a Cs structure with an imaginary vibrational mode of 1733i 
cm-1, towards both the reactant (s<0) and product (s>0) directions. In 
principle, both directions would lead to an energy minimum in the 
reactant or product “valleys.” Unfortunately, similar to the case with 
FeO, our IRC ended before the true structure of the reactant complex 

could be achieved, although the terminal energy is very close to that 
of the reactant complex. Despite this, the IRC analysis considered in 
this study is sufficient to increase our understanding of the reaction 
pathway.

The most important first step-reaction along the reaction pathway 
is discussed in detail in Figure 7a. The migrating hydrogen atom 
interacts not only with the C and O atoms but also with the Mn atom 
to some extent. The Mn atom is not a spectator in the first step-reaction 
process; it also significantly contributes to the migration of the H atom. 
It is obvious that the Mn–H bond distance exhibits an interesting 
feature: the distance reaches the minimum value (1.85 Å) in TS1. This 
means that there is an orbital overlap between the migrating hydrogen 
atom and the Mn atom in the vicinity of TS1. Therefore, the Mn atom 
must play an essential role in this C–H bond dissociation. In addition, 
the Mn–O distance remains unchanged during the entire process.

Next, let us look at the change in the bond angle for the first step-
reaction. In Figure 7b, the change in the C–Mn–O angle exhibits an 
interesting feature; the angle keeps changing and reaches the minimum 
value (79°) in TS1. The C–H bond starts to dissociate at s=-0.6 and 
the O–H distance remains nearly constant (0.96 Å) after passing s=1.0. 
Therefore, we consider that H-atom migration happens in the range 
-0.6<s<1.0. The activation barrier for the first step-reaction obviously 
derives from C–H bond dissociation and the C–Mn–O strain energy. 
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Figure 5: Change of internal coordinates for the concerted p-chlorophenyl 
migration along the quintet IRC from the hydroxo intermediate to the product 
complex. Atomic distances are in Å and bond angles are in degrees. 
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cross-point has been assumed to exist between the high-spin and low-
spin potential energy surfaces. Nonetheless, no spin crossing between 
that two states’ potential energy surfaces was found after computing 
both the triplet and quintet states for FeO and both the quartet and 
sextet states for MnO. The low-spin potential energy diagram lies above 
the high-spin one for the entire reaction pathway. We believe that our 
theoretical study on the possible reaction pathways for the conversion 
of chlorobenzene to p-chlorophenol will help in the analysis of catalytic 
and enzymatic functions of C-H and C-C bond activation by transition 
metal complexes.
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