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ABSTRACT

This two-part guide reviews several standard data analytic tools with a wide variety of military financial management 
applications. Consider defence fuel budgets. The better our budget estimates, greater the efficiency and effectiveness 
of our forces. Budgeting too little can impact future operations, training, equipment, or sacrifice other priorities 
reprogrammed to fill funding gaps. Budgeting too much also risks sacrificing military priorities, as extra funds may 
be discovered too late to be reprogrammed efficiently. To minimize costly adjustments and wasteful reprogramming 
requires better guesses. The challenge with fuel prices is that they vary a lot. We have three choices, to: Ignore 
variability, Capture variability, or explain variability. The first section reviews extrapolative Forecasting and Sample 
Means (Averages) that mostly ignore variability, and then proceed to Confidence Intervals and Critical Values 
that attempt to capture variability. The next section explores the power of Simulation and Regression Analysis 
(“parametric estimation”) that tries to explain variability. This two-part guide briefly summarizes each approach in 
the context of fuel budgets, together with hints of how to apply the techniques in Excel. Widespread application of 
these and other data analytic tools could improve military management and budgeting and increase the efficiency 
and effectiveness of our forces.

Keywords: Military financial management; Military services; Forecasting; Simulation and regression analysis; 
Budgeting

INTRODUCTION

“It's tough to make predictions, especially about the future.” 
Yogi Berra

Yogi Berra was right. It’s tough to make predictions. An important 
application is defence budgeting. Uncertainty over costs and future 
funding is especially problematic for the military. Defence depart-
ments typically program resources (equipment, personnel, and 
funding) years in advance.13 A nation’s security critically depends 
on the accuracy of these forecasts. 

The better our budget forecasts, the greater the potential efficiency 
and effectiveness of government programs. Forecasting fuel bud-
gets offers an illustration. This two-part guide reviews several stan-
dard data analytic techniques with a wide variety of management 
applications. Each technique is briefly summarized in the context 
of budgeting for fuel, together with hints of how to apply the tech-
nique in Excel.

The fuel budget case study serves to review and summarize eight 
possible guesses, generated from six standard data analytic tech-
niques. The techniques start simply. We launch the first of this 

two-part series with extrapolative Forecasting and Sample Means 
(Averages) that mostly ignore variability, and then proceed to 
Confidence Intervals and Critical Values that attempt to capture 
variability. The next section explores the power of Simulation and 
Regression (or “parametric estimation”) which attempt to explain 
variability. 

Consider the risks of under- or over-Programming military funding 
for: Equipment (Procurement), Research & Development (R&D), 
Construction (MILCON), Military Personnel (MILPER), or Oper-
ating & Maintenance expenses (O&M). Fuel budget forecasts in 
the U.S. are included in the O&M account. The better our es-
timates, the more accurate our programming and budgeting, the 
greater the efficiency and effectiveness of future forces. 

Regrettably, the U.S. Government Accountability Office (GAO) 
routinely criticizes the Department of Defense (DoD) for its cost 
and budget estimates. This two-part guide presents several data ana-
lytic approaches to improve those estimates. Widespread applica-
tion of these and other analytical tools & techniques can improve 
military. 

Reducing uncertainty to improve budget estimates involves three 
fundamental questions: 1) what can go wrong? 2) How bad is it? 
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and 3) what are the chances? In answer to the first question, two 
things can go wrong. The dual risk is: i) Underestimating future 
expenditures and Programming too little; or ii) Overestimating fu-
ture expenditures, and Programming too much. In the case of U.S. 
fuel budgets:

E]ach fiscal year, the Department of Defense (DOD) sets a standard
price…it will charge the military services... In setting this standard
price, DOD endeavors to closely approximate the actual price it
will pay for the fuel during the year of budget execution. However,
due to the timing of DOD’s budget process, the department esti-
mates this price almost a year in advance of when it will actually
purchase the fuel…

If the actual market price…is higher than the price DOD is charg-
ing its [military] customers, DOD will have to pay more for fuel 
than it is being reimbursed [i.e., DoD underestimates future expen-
ditures]. If the actual price is lower than the standard price, DOD 
will have more cash than it anticipated [i.e. DoD overestimates fu-
ture expenditures]. (GAO 2014 p.1) [1].

The second question “how bad is it?” explores the consequences: 

i) Underestimating future expenditures and Pro-
gramming too little can have serious consequenc-
es. For example, GAO (2015) reports early deliver-
ies of the U.S. Air Force F-35 Joint Strike Fighter experi-
enced nearly 50% cost overruns (from an original guess of
$226,355mil to $338,950mil). Programming too little can
impact future quantities, quality, or sacrifice other govern-
ment priorities reprogrammed to fill funding gaps [2,3].

ii) Overestimating future expenditures and Programming too
much can also have serious consequences. Surprisingly,
GAO (2015) found the U.S. Navy’s DDG1000 Destroyer
enjoyed a nearly 40% cost under run (from an original guess
of $36,858 mil to $22,497mil). But programming too much
can sacrifice other priorities, as extra funds may be discov-
ered too late to be reprogrammed efficiently and effectively.

In the case of fuel, GAO (2014) cites a DoD study that warns: “Fuel 
cost volatility poses a major threat…and can require funding real-
locations that disrupt investment programs or threaten readiness.” 
(p.35) to minimize costly adjustments and wasteful reprogramming 
requires better guesses. This leads to the third question—what is the 
likelihood? This data analytic guide offers eight ways to improve 
budget estimates and reduce the risk of under- or over-program-
ming defence expenditures [4,5].

LITERATURE REVIEW

Section I: Ignore or capture variability

Consider fuel prices. With no uncertainty, it’s easy to make pre-
dictions. If prices never vary and the future mirrors the past, sim-
ply use the latest price paid to estimate next year’s fuel costs. But 
prices vary a lot, sometimes wildly. For instance, in 2012 DoD 
under-estimated actual fuel prices by nearly 30%: “DOD estimated 
a standard price of $131.04 per barrel [while] DOD’s actual costs 
averaged $167.33 per barre.” (GAO 2014 p.8) Two years later DoD 
vastly over-estimated fuel prices when oil prices collapsed to $60/
barrel, paying nearly $14 billion for the equivalent of 87 million 
barrels—an average cost in excess of $160/barrel: 

During fiscal years 2009 through 2013, the DOD’s actual costs for 
bulk fuel differed considerably from its budget estimates, largely be-
cause of fluctuations in fuel prices...DOD underestimated its costs 
[fuel budgets] for 3 years [2010 -$2.9bil; 2011 -$3.4bil; 2012 -$3.2bil] 
and overestimated them for 2 years [2009 +$3.0bil; 2013 +$2.0bil] 
(GAO 2014 p. 1).

Fuel costs provide a convenient case study to illustrate several stan-
dard data analytic approaches to improve incremental public bud-
geting—with one important caveat. The data analytic techniques 
reviewed here represent “the tip of the iceberg.” Faced with the 
challenge of an actual fuel budget forecast, defence analysts apply 
some combination of these tools, together with other data analytic 
techniques [6,7].

Consider a budget that consists of a price per gallon (P) multiplied 
by a quantity of gallons (Q): “DOD and the Military Services es-
timate total funding needs for fuel in annual budget requests by 
using planned consumption [Q]…and a standard price [P]…set by 
DOD.” (GAO 2016). How much should we program for next year’s 
fuel costs? In fiscal year, t, and our prediction of next year’s (t+1) 
budget is: B

t+1
=P

t+1 
x Q

t+1.

“GAO identified two factors that contributed to the differences be-
tween estimated and actual costs— (1) fuel price fluctuations [Prices 
(P)] and (2) differences between the military services’ estimated 
fuel requirements and their actual fuel consumption [Quantities 
(Q)]… [D]ifferences between estimated and actual fuel costs were ac-
counted for primarily by fluctuations in the market price for fuel.” 
(GAO 2014 p. 7) [8,9].

Suppose we know next year’s requirement, say Q
t+1

=100,000 gal-
lons, but are uncertain about next year’s price, P

t+1
 =? ($/gallon). 

What should we use as our price estimate? How much should we 
program for next year’s fuel budget? 

We have three choices: A) Ignore variability; B) Capture variabil-
ity; or C) Explain variability. The fuel budget case study serves to 
review and summarize eight possible estimates, generated from six 
standard data analytic techniques. The techniques start simply. We 
launch the first of this two-part series with extrapolative Forecast-
ing and Sample Means (Averages) that mostly ignore variability, 
and then proceed to Confidence Intervals and Critical Values that 
attempt to capture variability. In the next section we explore the 
power of Simulation and Regression or (“parametric estimation”) 
which attempt to explain variability. Each technique is briefly sum-
marized, together with hints of how to apply the technique in Excel.

We will generate eight predictions of next year’s fuel budget (B
t+1

) 
from our six data analytic techniques. But there is a catch. As we 
move from ignoring variability, to capturing variability, and finally 
explaining variability, we may enjoy progressively more confidence, 
but sacrifice precision. To increase both confidence and precision 
requires more data, better data, and/or more sophisticated data 
analytic techniques, which takes time and money.

A) Ignore variability

1. First guess=> extrapolative forecasts: With no data on past
prices, we could use the latest spot market price, P as our esti-
mate. In the simplest case, if this month’s price is P =$2.50/
gal, a first guess of next year’s budget is: B

t+1
=$250,000.

2. If P
t+1

 = =$2.50/gal, and Q
t+1

=100,000 gallons: B1 = $250K
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Second guess=> sample mean: Collecting data on past prices, 
we could use the average (or “mean”) of our sample of 
n=1, N prices as our estimate.14 Given N=36 months of 
prices in Table 1, the Average Price is P= 

1
{ }N

nn
P

=∑ /N = 
$2.00/gallon.15 (See Excel Hint) So, our second guess is: 
B

t+1
=$200,000.

● If P
t+1

 = P= $2.00/gal, and Q
t+1

=100K gallons: B2 = $200K
(Table 1).

Note: An Average (or “Mean”) is calculated in Excel inserting data 
into the formula Average (number1, number2)

Excel hint: To calculate the average (or mean), first type the 36 
months of prices found in Table 1 into a single column in Rows A1 
through A36 (going down each column, starting with the most re-
cent observation $2.50/gallon). Then click into cell A37 and type: 
=Average (A1:A36)

Table 2 re-organizes the data in Table 1 based on the frequency 
(count), and relative frequency (probability), of prices in our sam-
ple. Recall that to create Frequency and Relative Frequency data 
requires the selection of price intervals. Ten intervals are reported 
in Table 2. Next, we record the number of prices in Table 1 that 
appear in each interval. That is the count or “Frequency” recorded 
in the second column of Table 2. The “Relative Frequency” in the 
third column is simply the count (frequency) divided by the num-
ber of observations (N=36). 

Figures 1 and 2 offer graphical illustrations of the frequency dis-
tribution (count), and relative frequency (probability) distribution, 
of our sample of N=36 past prices reported in Table 2 (Figures 1 
and 2).

Excel hint: To generate Frequency and Relative Frequency histo-
grams (graphs) in Excel (Figures 1 and 2), first enter the ten inter-
vals in parenthesis from the first column in Table 2 into Rows C1 
through C10 of your Excel spreadsheet. Then click on the Data 
tab and choose the data analysis tool pack. Select Data Analysis, 
then Histogram. Next, click into the rectangle next to Input Range 
and type A1:A36 (alternatively, hit the square next to the rectangle, 
and block our column of N=36 fuel prices). In the Bin Range enter 
C1:C10 (or block our ten intervals). Next, check the Chart Output 
box and click OK. You should get a frequency graph similar to 
Figure 1. For Figure 2, select/highlight both the fuel cost interval 
and frequency columns. Click on the Insert tab and select the bar 
chart. You should get a relative frequency graph similar to Figure 2. 

Note in Figures 1 and 2, how spread out our sample of N=36 past 
prices are around the average (mean) price P=$2.00/gal. Since past 
prices varied significantly around the mean, how confident can we 
be using the sample average to predict next year’s price (or fuel 
budget)? Instead of ignoring this variability, a better guess would 
attempt to capture variability. But this requires a measure of disper-
sion of data around the mean of the “population” from which our 
sample is drawn called the standard deviation (σ=sigma). 

Note: A Standard Deviation (σ) is calculated in Excel inserting data 
into the formula STDEV (number1, number2)

Excel Hint: To obtain the standard deviation of our sample data (s), 
return to our 36 months of prices in the single column—Rows A1 
through A36. Then click into cell A38 and type:=STDEV(A1:A36)

B) Capture variability

Two standard approaches to capture variability are through: Confi-

Table 1: Sample of N=36 months of prices ($/gallon).

2.50 2.04 1.11 2.10 1.95 2.02

2.56 2.81 2.54 1.91 0.58 1.61

1.60 2.48 2.25 2.33 1.86 2.90

2.90 2.82 1.45 2.62 1.07 1.84

1.51 1.38 1.97 2.06 2.15 0.97

2.25 2.08 2.59 1.66 1.31 2.05

Table 2: Frequency and relative frequency of N=36 prices.

Cost ($/gal) Frequency (Count) Relative Frequency (Count/N)

≤1.2 ($1.20) 4 11%

1.2-1.4 ($1.40) 2 6%

1.4-1.6 ($1.60) 2 6%

1.6-1.8 ($1.80) 3 8%

1.8-2.0 ($2.00) 5 14%

2.0-2.2 ($2.20) 7 19%

2.2-2.4 ($2.40) 3 8%

2.4-2.6 ($2.60) 5 14%

2.6-2.8 ($2.80) 1 3%

≥2.8 ($3.00) 4 11%

N=36 =100%

Figure 1: Frequency distribution (Count).

Figure 2: Relative frequency distribution (Probability).

dence Intervals and Critical Values. When to use one or the other? 
That depends on a useful distinction between “uncertainty” and 
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“risk.” 

• Uncertainty is the lack of perfect information about future
measures of interest (e.g. fuel prices) and can be described
using Confidence Intervals.

• Risk is the likelihood of undesirable outcomes (for example,
exposure to budget shortfalls from underestimating future
fuel expenditures and Programming too little) and can be
described using Critical Values.

2. Third guess=> confidence intervals (C.I): Given uncertain-
ty about next year’s fuel price, instead of using the sample
mean (a point estimate) and hoping we get lucky, intervals
can be constructed around the sample mean that offer some
confidence the true (population) mean lies somewhere in
those intervals.

Past price variability is captured in confidence intervals constructed 
using a measure of dispersion of data around the population mean 
called the population standard deviation (σ=sigma). The problem 
remains that to build a confidence interval, we need something we 
generally don’t know, the population standard deviation, and σ. 
The best we have is our sample standard deviation, s. So, instead 
of using σ to build confidence intervals, we adjust the sample stan-
dard deviation (s), dividing it by the square root of the sample size 
(n), and use what we call the “standard error”: S.E. = s/ .n
Reports descriptive statistics for our sample of fuel prices (see Excel 
Hint). Rounding up, the Mean of the sample is P=$2.00/gal, and 
Standard Deviation is s=$0.60/gal. So, the standard error is: S.E. = 
s/ .n  = $0.60/6 = $0.10 (Table 3).

Excel hint: An easier way to obtain descriptive statistics for our 
sample (including the mean, standard deviation, etc.) is to use the 
Data Analysis Tool Pak. In our Excel spreadsheet simply click the 
Data tab, select Data Analysis, then Descriptive Statistics. Check 
Summary Statistics and then click into the rectangle next to Input 
Range and type A1:A36 (Alternatively, hit the funny box to the 
right, and block our column of fuel prices and hit Enter). When 
you hit OK, a column of summary statistics should appear similar 
to Table 3.

To build confidence intervals requires adding and subtracting stan-
dard errors (S.E.) from the mean. The more standard errors we 
add and subtract, the bigger the interval, and the greater our con-
fidence (probability) the true population mean lies somewhere in 
that interval. In general, with large enough samples (n≥30), we can 
express:

68.26% confidence for an interval ± 1 S.E. around the sample 
mean,  95.44% confidence for an interval ± 2 S.E. 
around the sample mean,

99.74% confidence for an interval ± 3 S.E. around the sample 
mean.

This reveals a trade-off between confidence and precision. The 
greater confidence required, the bigger the interval (i.e. the less pre-
cision). To increase both confidence and precision requires more 
and/or better data, which takes time and money.

A popular confidence level is 95%. This corresponds to an interval 
nearly two (±1.96) standard errors (S.E.= s/ .n  = $0.10) around a 

sample mean (P=$2.00/gal). In general, the choice of confidence 
level (partly) depends on the consequences of being wrong. Presum-
ably, the greater the consequences, the more confidence required. 
Sadly, the greater confidence required, the bigger the interval, and 
thus the “sloppier” our estimate. To obtain more precise estimates 
(i.e shrinking the confidence interval) for the same confidence 
level, requires more and/or better data. Otherwise, more precise 
estimates can be obtained by accepting less confidence i.e. a greater 
risk the true (population) mean lies outside our confidence inter-
val.

To capture variability, with a sample mean P=$2.00/gal, and stan-
dard error S.E.=$0.10, the 95% Confidence Interval is [$2.00-(1.96 
× $0.10); $2.00+(1.96 × $0.10)] = [$1.80; $2.20]. If our sample were 
truly random, then we can be 95% confident the true population 
mean of past prices lies somewhere between $1.80/gal and $2.20/
gal. Of course there is still a 5% risk the true mean value (average 
price) lies outside this interval. Therefore, based on our sample 
price data, if the future mirrors the past, we can be 95% confident 
the true population mean of next year’s fuel costs will lie some-
where in the interval: B

t+1
=[$1.80 × 100,000; $2.20 × 100,000] 

=[$180,000; $220,000]. 

● If P=$2.00/gal, S.E.=$0.10, Q
t+1

=100K gallons, then the
95% C.I. is B3=[$180K; $220K]

Note: Excel calculates the value that needs to be added and sub-
tracted from the mean to obtain Hi & Lo bounds of a Confidence 
Interval with the formula =CONFIDENCE (Alpha, Standard_dev, 
Size) [Alpha=1-Confidence Level; Standard_dev= Standard Error; 
Size= Sample Size]

Excel hint: Another way to obtain a Confidence Interval (C.I.) us-
ing our Excel spreadsheet is to click the Data tab, then Data Analy-
sis, and select Descriptive Statistics. Check the box for Confidence 
Level for Mean and input whatever confidence level we need (for 
example, 95). Then click into the Input Range and type A1:A36. 
Hitting OK yields the value (for example, 0.20) we add and subtract 
from the mean to obtain the Hi and Lo bounds of our Confidence 
Interval. 

A 95% Confidence Interval (C.I.) around our sample mean price 
appears below, along with three other confidence intervals:

50% C.I.= $2.00  $0.07=[$1.93, $2.07]=>$0.14/gal interval be-
tween Hi & Lo

90% C.I.= $2.00  $0.16=[$1.84, $2.16]=>$0.32/gal interval be-
tween Hi & Lo 

Table 3: Descriptive statistics from sample of prices.

Mean 1.995

Standard Error (S.E.) 0.096

Standard Deviation (s) 0.577

Sample Variance 0.333

Range 2.311

Minimum 0.584

Maximum 2.895

Count 36

Confidence Level (95.0%) 0.195
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95% C.I.= $2.00  $0.20=[$1.80, $2.20]=>$0.40/gal interval be-
tween Hi & Lo

99% C.I.= $2.00  $0.26=[$1.74, $2.26]=>$0.52/gal interval be-
tween Hi & Lo

These four Confidence Intervals illustrate the trade-off between 
confidence and precision. The greater confidence required, the less 
precision (i.e. the bigger the interval). For example, if we are willing 
to accept a 50-50 chance of capturing the true (population) mean 
price, then there is only a 14 cent/gal gap between the Hi and Lo 
bounds of the interval. Note the gap increases to 52 cents/gal if we 
need to be 99% confident the true mean price lies somewhere in 
the interval. 

The dilemma is that budget estimates that attempt to capture vari-
ability using a C.I. necessarily involve interval estimates. For ex-
ample, our sample price data suggests we can be 95% confident 
next year’s fuel expenditures will be somewhere between $180K 
and $220K (a $40,000 gap that reflects uncertainty). While this is 
useful information, for purposes of public budgeting, a single value 
must generally be selected. Unfortunately, if we select any value in 
the interval (say the mid-point $200K) we can no longer express any 
statistical confidence in that estimate.16 One way out of this dilem-
ma is to shift from uncertainty to risk, and to use “critical values.”

4. Fourth guess=> critical values: Reporting an interval and
expressing 95% confidence the budget we need next year
lies somewhere in that interval can be problematic. Pub-
lic budgeting typically requires point estimates, not inter-
val estimates. While useful in calculating upper and lower
bounds of possible programming errors,17 it can be helpful
to reframe the problem to obtain a single price (or budget)
estimate. The question then becomes: For any price esti-
mate (or “critical value”) used to program next year’s budget, 
what is the Risk we will underestimate actual expenditures
and program too little, and experience a budget shortfall?
Or, for example, how much should we program for next
year’s fuel costs to be 95% confident we will have sufficient
funds, and only a 5% risk we will run over and need more?

The challenge is to identify a fuel price to use in our budget esti-
mate, so there is only a 5% risk the actual price will be higher than 
this critical value. Programming next year’s fuel budget using this 
price would give us 95% confidence actual expenditures will lie at 
or below our requested budget, and only a 5% risk of a cost overrun 
(or budget shortfall). 

For example, using our best guess of the population mean as our 
critical value (i.e. our sample average fuel price, P=$2.00), gives us 
50% confidence the future price will be at or below this value, 
but also a 50% risk actual prices will be above this critical value. 
Figure 3 illustrates the risk of under-programming expenditures if 
we ignore variability and use the population mean price P=$2.00/
gallon, and program $200K for fuel. This budget estimate gives us 
50% confidence we will meet actual expenditures next year, but 
also a 50% risk of a budget shortfall, or that actual fuel costs will 
exceed $200K (Figure 3).

For any price estimate (critical value) we use to program next year’s 
fuel budget to achieve more than 50% confidence, our sample data 
allows us to determine the probability we will have sufficient funds, 
and the risk we won’t. But first it is necessary to convert our price 
estimate into a “Z-score.” Recall this measures how many standard 

errors our estimate is above the mean:  
Z-score = [(Critical Value–Mean)/Standard Error].

Note: Formula to find a Z-score (number of standard errors above 
the mean) in Excel is =NORM.INV(Probability, Mean, Standard_
dev)

For example, a fuel price estimate (critical value) of $2.00/gallon 
corresponds to a Z-score of 0, since it is zero standard errors above 
the mean. Since our standard error is $0.10, using $2.10 as our 
price estimate is one standard error above the mean, and corre-
sponds to a Z-score of 1. Using $2.20, our guess is two standard 
errors above the mean, with a Z-score of 2. In fact, converting any 
price estimate into a Z-score allows us to calculate the probability 
we will have sufficient funds (called the “p-value”), and the risk we 
won’t (one minus the p-value).

Note: For any given price estimate (critical value), Excel calculates 
the probability (“p-value”) we will have sufficient funds using the 
formula =NORM.S.DIST(Z-score, True)

[Risk of facing budget shortfall is one minus this value]

The example below illustrates declining risks of a budget shortfall 
(i.e. declining risks of under-programming fuel costs) for each of the 
corresponding fuel price estimates (Pt+1), and associated Z-scores:

50% Risk (50% Confidence): Pt+1=$2.00 (Z=0)

20% Risk (80% Confidence): Pt+1=$2.0845 (Z=0.845)

10% Risk (90% Confidence): Pt+1=$2.1285 (Z=1.285) 

5% Risk (95% Confidence):  Pt+1=$2.1645 (Z=1.645) 

1% Risk (99% Confidence):  Pt+1=$2.233 (Z=2.33)

Using a fuel price estimate of $2.00/gallon gives us a 50% risk of 
a budget shortfall. Suppose we need to lower the risk from 50% to 
5%. How much should we program to be 95% confident there will 
be sufficient funds? What is the critical value? 

Using the mean price P=$2.00/gallon (or Budget of $200K) gives 
us 50% confidence (or 50% probability) we will cover actual ex-
penditures. The question is: How far above the mean (measured 
in standard errors: S.E.=$0.10) do we need to go to obtain an ad-
ditional 45% confidence (probability) we can cover actual fuel ex-
penditures (a total probability of 50%+45%=95%)? Using Excel (or 
a standard normal table), the critical value needs to be 1.645 stan-
dard errors (S.E.) above the mean. In this case, to be 95% confident 
we have programmed sufficient funds, the critical fuel price needs 
to be: $2.00 + (1.645 × $0.10) = $2.17.

Figure 3: Normal distribution of means of sample budgets.
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Note: To obtain a Critical Value (Price Estimate) in Excel that cor-
responds with a designated confidence level (probability) of hav-
ing sufficient funds, use the formula =NORM.INV (Probability, 
Mean, Standard_dev) [For 5% Risk: Probability=95, Mean=2.00, 
and Standard_dev=0.10]

Our fourth guess illustrated in Figure 4 indicates we can have 
95% confidence in programming a fuel budget of B

t+1
=$2.17 × 

100,000=$217,000 with only a 5% risk of a budget shortfall. 

● If P=$2.00/gal, S.E.=$0.10, Q
t+1

=100K gallons, the critical
value for 5% under-programming Risk (or 95% Confidence
of sufficient funds) is B4=$217K. (Figure 4).

Interestingly, the U.S. weapon systems acquisition reform act 
(WASARA) requires:

Disclosure of confidence levels for baseline estimates of major 
defense acquisition programs.—

The Director of Cost Assessment and Program Evaluation, and the 
Secretary of the military department…shall each— (1) disclose … the 
confidence level used in establishing a cost estimate for a major…
program, the rationale for selecting such confidence level, and…the 
justification for selecting a confidence level of less than 80 percent 
[or greater than 20 percent risk of under-programming.]  

WSARA Public Law 111-23—May 22, 2009

Unfortunately, lowering the risk of a budget shortfall by selecting 
a confidence level greater than 80% creates another risk. For ex-
ample, whereas our 95% confidence level satisfies WASARA man-
dates, and lowers the risk of under-programming, it increases risks 
of over-programming!

Selecting a confidence level greater than 80% lowers the risk of 
budget shortfalls (e.g. 95% Confidence=>5% Risk vs. 80% Confi-
dence=>20% Risk), but raises other risks related to over-program-
ming: competing programs cannot be funded (within defense or 
other parts of government); inefficient end-of-year reprogramming; 
and/or higher costs if bigger budgets lower incentives to control 
costs. So, setting confidence levels not only requires evaluating ac-
ceptable risks of under-programming, but must also consider con-
sequences of over-programming!

Section II: A data analytic guide for defence management and 
budgeting

Now what if we are uncertain about both the price and the require-
ment? For example, over the period 2009-2013 GAO (2014) found:

“[The] difference between the price DOD paid for fuel and the 
price it charged its [military] fuel customers…accounted for, on av-
erage, 74 percent of the difference between estimated and actual 
costs [fuel budgets]…[while] differences between the services’ esti-
mated fuel requirements and actual fuel consumption…accounted 
for an average of 26 percent of the difference...” (p.8)

How much should we program for next year’s fuel costs when both 
variables (Price and Quantity) are uncertain?

1. Fifth Guess=> Simulation Model: Suppose we are not only
uncertain about next year’s Price (P

t+1
=? $/gal), but also the

requirement Q
t+1

=? gallons). How much should we program
for next year’s fuel budget: B

t+1
= P

t+1
x Q

t+1
=? Simulation of-

fers a powerful tool when more than one variable is uncer-
tain.

Simulation packages allow us to assign probability distributions to 
each variable (Price and Quantity), and to specify relationships be-
tween variables. (See Excel Hint and Appendices 1-3) Table 4 offers 
examples of some probability distributions that can be assigned to 
variables of interest. In our fuel budget case study, “Monte Carlo” 
simulations replicates real life with thousands of trials that repeat-
edly draw values from assigned probability distributions for price 
and quantity, and plot the resulting fuel budgets (B=P × Q). This 
generates a relative frequency histogram similar to Figure 2, which 
can be interpreted as a probability distribution of possible future 
fuel costs (Table 4).

Our fuel budget case study assumes Prices are normally distributed 
and draws Quantities from a Triangular distribution (See Appendi-
ces 1-3). The relative frequency histogram (probability distribution) 
generated from the resulting budget (Price × Quantity) estimates 
can be used directly to capture uncertainty through confidence in-
tervals, or to assess risk through critical values. For example, Figure 
5 offers a notional relative frequency histogram (budget probability 
distribution) from a simulation of thousands of trials. To capture 
variability, we can either build a Confidence Interval that gener-
ates a fifth guess (B5a = [BLo; BHi]), or Identify a Critical Budget 
(B5b = BCritical) that offers an acceptable risk of a budget shortfall 
(Figure 5).

Excel hint: Building a Simulation requires commercially available 
Packages such as @RISK used with Excel. Appendix 1 describes 
how to identify and test which distribution to use as a model to best 
fit sample data such as our fuel prices. In @RISK, highlighting our 
Fuel Data column, select “Distribution Fitting” to fit a Normal Dis-
tribution. Appendix 2 describes how to generate a probability dis-
tribution model when we only have three data points (a Minimum, 
Maximum and Most Likely fuel requirement). Select “Distribution 
Fitting” to fit a Triangular Distribution. Finally, Appendix 3 de-
scribes how to define the relationship between our variables (Price 
× Quantity) in an Output Cell, and to run the simulation to gener-
ate results similar to Figure 5. To find upper and lower bounds of 

Figure 4: Critical value with 5% risk of under-programming and budget 
shortfall.

Table 4: Alternative probability distributions.

Beta Student’s t

Chi-square Exponential

Poisson Triangular

Normal Weibull

Uniform Gamma

Lognormal Logistic



7

Francois M OPEN ACCESS Freely available online

J Def Manag, Vol. 11 Iss. 5 No: 215

a confidence interval, or a critical value, simply slide the markers 
above the resulting budget relative frequency histogram (probabil-
ity distribution) to generate charts similar to Figures 5a and 5b. 

In the case of fuel prices (P), given our sample data, simulation 
packages allow us to test which probability distribution (e.g. Table 
1) best fits the data. It turns out our sample fuel data fits a Normal
distribution. (See Appendix 1) So, to simulate prices, we use a Nor-
mal distribution with the mean and standard error of our sample
data (Mean=$2.00; S.E.= 0.10).

In the case of fuel consumption requirements (quantity in gallons, 
Q), suppose we have no data. In the absence of data, experts may be 
surveyed to reveal lower and upper bounds, and a most likely value. 
In our example, we assume the Most Likely requirement is 100K 
gallons. Suppose experts reveal the Minimum likely requirement is 
75K gallons, and the Maximum 127K gallons. This is all we need 
to model next year’s requirement as a Triangular (or Beta) distribu-
tion. (Appendix 2)

Simulation software can be used to run thousands of trials which, 
in the case of fuel costs, repeatedly draws prices (P) from our nor-
mal distribution, and requirements (Q) from our Triangular distri-
bution, and simply multiplies P × Q to generate and plot possible 
budgets. Figures 5a and 5b illustrate a relative frequency histogram 
(probability distribution) of possible budgets from a simulation of 
10,000 trials. (See Appendix 3) 

Confidence Interval: When both fuel prices and requirements are 
uncertain, results of the simulation illustrated in Figure 1a indicate 
we can be 95% confident next year’s expenditures will lie some-
where in the interval: B

t+1
= [$85,000; $330,000]. 

● Given 36 months of fuel price data, and expert opinions
on quantities (minimum likely requirement 75K gallons,
maximum 127K, and most likely 100K), simulation results
illustrated in Figure 5a reveal the 95% Confidence Inter-
val: B5a=[$85K; $330K] (Figure 5a).

Note the gap between our Hi and Lo budget estimates ($330K-
$85K=$245,000) reflects deep uncertainty about fuel costs. Given 
our sample data, the only way to shrink this gap is to accept less 
than 95% confidence the true budget (actual fuel costs) will lie 
somewhere in our interval. This reflects the unfortunate trade-off 
between confidence and precision. The more precision (smaller in-
terval), the less confidence. 

Instead of using a confidence interval (Lo and Hi budget numbers) 
to bound our guesses, it may be useful to shift our perspective from 
uncertainty to risk. This allows us to report a single “critical” value. 

For example, the question may be how much to program for fuel 
(what is the “critical value”) so there is only 5% risk of a budget 
shortfall (or 95% confidence we will have sufficient funds)?

Critical value: When both fuel prices and quantities are uncertain, 
results of our simulation illustrated in Figure 5b indicate we can 
have 95% confidence there will be sufficient funds (or 5% risk of a 
shortfall) if we program a fuel budget: B

t+1
=$310,000.

● Given 36 months of price data and expert opinions on
quantities (i.e. minimum likely requirement of 75K gallons,
maximum 127K gallons, and most likely 100K gallons), sim-
ulation results illustrated in Figure 1b indicate the Critical
Value for 5% risk of a budget shortfall (95% confidence of
having sufficient funds) is: B5b=$310K (Figure 5b).

Note that to accommodate the DoD mandate discussed earlier 
(WASARA 2009) of at least 80% confidence of having sufficient 
funds (i.e. no more than 20% risk of a budget shortfall), requires 
a budget of at least $255,000. According to our simulation, to in-
crease confidence above 80% of having sufficient funds (or lower 
the risks of a budget shortfall below 20%), requires programming 
more than $255K for fuel.

Now suppose we know next year’s requirement, Q
t+1

=100,000 gal-
lons, but are still uncertain about next year’s price, P

t+1
=? ($/gal-

lon). How much should we program for fuel: B
t+1

= P
t+1

 x Q
t+1

? The 
first two choices we explored include: A) Ignore variability; and B) 
Capture variability. The third and most data intensive choice is to: 
C) Explain variability.

C) Explain variability

Returning to the assumption we know next year’s requirement 
(Q

t+1
=100,000 gallons), instead of attempting to capture variability 

in our sample prices, what if we could explain the variability? Re-
gression analysis, also known as “parametric estimation,” involves 
building a prediction model that includes factors (e.g. “cost driv-
ers”) that help explain past variation in something we care about, 
i.e. next year’s fuel price.

6. Sixth guess=> regression analysis (Parametric estimation)

The goal is to construct a prediction model that helps explain 
past variation in fuel prices. The challenge is to uncover factors 
(explanatory variables) that account for this variation. The logic is 
simple. If these factors (e.g. “cost drivers”) adequately explain past 
variation, the same relationship might help predict the future. The 
regression relationship is your prediction model. Like any good re-
lationship, building a regression takes some effort.

The U.S. Department of Energy’s “Energy Information Agency” 
(EIA) provides regular forecasts based on assumptions about factors 
related to energy prices. (www.energy.gov) Consider the following 
factors (explanatory variables) that might help explain variation ob-
served in fuel prices:

● P=f (Supply, Demand, Wars, Weather, Exchange Rates,
Cartels.)

For purposes of illustration, suppose energy supply is relatively sta-
ble, so that demand is the primary factor impacting prices (and as-
sume other variables have negligible influence). With supply stable, 
world energy demand is likely one factor that influences prices. 
Demand for energy partly depends on the strength of the global 
economy. One “demand” measure (a so-called “proxy variable”) Figure 5: Simulation of relative frequency of possible budgets.

http://www.energy.gov
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to help explain price volatility might be average economic growth 
rates of the world’s biggest economies—data routinely reported by 
the Organization for Economic Cooperation and Development 
(OECD). 

Once we settle on one or more (“Independent”) explanatory vari-
ables, the next step is to consider the impact each explanatory vari-
able has on our prediction (“Dependent”) variable, i.e. fuel prices. 
Is there a direct (positive) relationship between the two, or inverse 
(negative) relationship? Plotting the data, theoretical models, expe-
rience, judgment, and instinct are all valid guides. In our case, the 
hypothesis is that there is a positive relationship between economic 
growth rates and fuel prices: i.e. greater (smaller) growth rates corre-
spond to increased (decreased) energy demand, reflected in higher 
(lower) prices.

Regression analysis offers a way to test the hypothesis that econom-
ic growth rates help explain variation in fuel prices. Applied regres-
sion analysis generally assumes a linear relationship exists at any 
time, t, between our dependent variable, fuel prices (P

t
), and our 

independent (explanatory) variable, economic growth rates (X
t
), or: 

● Regression model: (P
t
),  = a + b (X

t
),  + (£

t
),

(Where “a” is the intercept and “b” is the slope of our linear
relationship, and  represents random errors from omitted
variables, etc.).

If there is a positive relationship between the Price (P
t
), and Eco-

nomic Growth Rates (X
t
), then the slope coefficient “b” should be 

positive. 

Given our sample of N=36 past prices Table 1, the challenge re-
mains that to test our model requires the collection of correspond-
ing data on economic growth rates over the same period. Table 2 
offers an illustration (Table 5).

The next step is to enter data into a regression software package. 
(See Excel Hint and Table 6) Regression packages automatically re-
port intercept (“a”) and slope coefficients (“b”) that generate the 
best linear relationship between the explanatory variable(s) and the 
prediction variable (i.e., the best linear relationship that minimizes 
the sum squared errors of actual fuel price data from what the mod-
el would predict).18 This best linear relationship is our prediction 
model. The logic is simple. If these factors adequately explain past 
variation, the same relationship might help predict the future.

Excel hint: To run our regression in Excel, first type the 36 month-
ly percentage global economic growth rates found in Table 3 into a 
single column in Rows B1 through B36 (going down each column, 
starting with the most recent observation, 0.19). Then click on the 
Data tab and find Data Analysis (as you did earlier to generate 
Descriptive Statistics). Scroll down the list to find Regression and 
click OK. Find Input Y Range (which is asking for our prediction 
variable—fuel prices), and insert A1:A36 into the rectangular space 
to the right and click Enter. (Alternatively, click the box next to the 
rectangular space and then highlight column A1 through A36 and 
click Enter…This automatically populates the rectangle with your 
fuel price data, A1:A36). Next find Input × Range (which is asking 
for our explanatory variable—growth rates), and insert B1:B36 into 
the rectangular space to the right and click Enter. (Alternatively, 
click the box next to the rectangular space and then highlight col-
umn B1 through B36 and click Enter…This automatically popu-
lates the rectangle with your growth rate data, B1:B36). Entering 
data was the hard part. Now all you have to do is hit OK. Regres-

sion statistics similar to those in Table 3 will automatically appear 
in a new sheet.

Regression results are typically reported in a table. Digesting the 
summary output takes a little practice. Table 6 reports regression 
statistics based on our sample of fuel prices and corresponding 
growth rates. Note Table 6 offers a streamlined version of regres-
sion results reported in Excel (Table 6).

Buried somewhere in the regression results are a set of coefficients 
(intercept and slopes). These are the keys to unlock our prediction 
model. These coefficients reveal the best linear relationship that 
exists between our explanatory variable (economic growth rates—
X) and our prediction variable (fuel prices—P). The regression out-
put reported in Table 6 reveals the best linear unbiased estimating
(BLUE) relationship is given by:

(P
t
),   = a + b (X

t
),   = -0.74 + 17.44 (X

t
), 

A first guess: To obtain our first fuel price estimate, we must en-
ter anticipated future values of our explanatory variables into our 
prediction model. So, before we can predict anything, we need edu-
cated guesses about future values of our explanatory variables. Any 
techniques previously discussed in this tutorial can be used to ob-
tain these values. So to apply our regression model to forecast next 
year’s fuel price P

t+1
 requires a prediction of next year’s economic 

growth rate X
t+1

. Then simply enter the appropriate values into the 
prediction (regression) model and do the required multiplication 
and addition (Table 7).

From Table 7, the average of next year’s forecasted monthly growth 
rates is X

t+1
= 0.17 which from our regression yields an estimated 

average annual price to use in next year’s budget estimate:

P
t+1

 = -0.74 + 17.44 X
t+1

 = -0.74 + 17.44 × 0.17 = $2.15, 

Which generates a fuel budget (“point”) estimate:

● If X
t+1

= 0.17, P
t+1

= (-0.74 + 17.44 X
t+1

)=$2.15, and
Q

t+1
=100,000, then B

t+1
= P

t+1
x Q

t+1
= B6a=$215,000.

Before we place too much faith in this estimate, we need to ask a 

Table 5: Sample of N=36 months of global economic growth rates (%).

0.19 0.14 0.12 0.14 0.14 0.19

0.18 0.20 0.19 0.14 0.11 0.13

0.16 0.18 0.16 0.18 0.16 0.21

0.20 0.20 0.13 0.19 0.11 0.15

0.14 0.12 0.14 0.14 0.19 0.12

0.17 0.15 0.19 0.13 0.12 0.14

Table 6: Regression results.

Regression Statistics

R Square 0.84

Standard Error (SEE) 0.24

Observations (N) 36

Coefficients Standard Error t Stat

Intercept  
(“a”)

-0.735 0.211 -3.475

X Variable 
(“b”)

17.440 1.327 13.143
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few questions: 

• Does the data support our hypothesis of a direct (positive),
or inverse (negative) relationship between a specific explana-
tory factor and the prediction variable? If not, why not?

• Since the (slope) coefficient on our explanatory variable (X
t
)

is positive

• (b=+17.44), this supports our hypothesis of a direct relation-
ship between economic growth rates and fuel prices.

• Are the explanatory variables significant?

• If a slope coefficient is zero, the associated explanatory vari-
able is useless (or redundant) in explaining past variation in
fuel prices—it is not statistically significant. Although coef-
ficients reported in regression outputs are never zero, that
doesn't mean they're significant. Since reported coefficients
are derived using sample data, reported coefficients are esti-
mates, not true values, and have associated standard errors.
The “t-statistic” reveals how many standard errors our coef-
ficient value is away from zero. As a rule of thumb, a value
two standard errors away from zero gives us roughly 95%
confidence the coefficient is statistically significant (i.e. not
zero). In Table 6, our intercept and coefficient values are
more than 2 standard errors away from zero (i.e. the inter-
cept more than 3 S.E. below zero, and slope more than 13
S.E. above zero). So far away in fact, that we can have more
than 95% confidence in using those values to generate our
forecast.

• How well does the prediction model explain the past varia-
tion observed in our prediction (dependent) variable?

• The best we could hope for is that our model explains
100% of past variation in fuel prices. The R squared sta-
tistic reported in Table 4 reveals the fraction of past varia-
tion explained by our model is 0.84. This means 84% of
past variation in our sample fuel prices is explained by eco-
nomic growth rates. An R squared measure lies somewhere
between zero (the model is no help), and one (the model ex-
plains all past variation). The closer R squared is to one, the
more confidence we can have in the model. But, be careful.
It's possible to make useful predictions from models with
low R squared, and useless predictions from models with
high R squared. Let common sense prevail.

We now have a prediction model, and some appreciation of how 
good it is. However, we know from the R squared value that only 
84% of past variation in fuel prices is explained by growth rates. 
(See Table 6) So some of the variation (16%) in our sample of fuel 
price data (the prediction variable) is not accounted for by the 
model i.e. depends on other explanatory factors. As a consequence 
much like using the average as our guess, point predictions from 
regressions are deceptively precise, or "exactly wrong."

A second guess: Building an interval much like a Confidence In-
terval, around our point prediction generates another guess that 
is "approximately right. This “prediction interval” accounts for 
both the point prediction and the unexplained variation (or error). 
Much like a confidence interval, prediction intervals are sloppier 
to report, since they involve a range of values. However, unlike our 
first forecast, we can express statistical confidence in this second 
forecast. The standard error of the estimate (SEE=$0.24) found in 
our regression results (Table 6) measures the unexplained variation. 
To obtain approximately 95% confidence of capturing the correct 
value, we can construct a prediction interval around our point esti-
mate by simply adding and subtracting roughly twice the standard 
error of the estimate. For example, our 95% prediction interval for 
next year’s price is:

P
t+1

 = [$2.15-2 × $0.24, $2.15+2 × $0.24] = [$1.67, 2.63]

If the future mirrors the past, we can be roughly 95% confident the 
true fuel price will lie somewhere between the lower ($1.67) and 
upper bounds ($2.63) of this prediction interval. So given the fuel 
requirement of 100K gallons, a (roughly) 95% prediction interval 
for next year’s budget is:

● Interval budget estimate: If X
t+1

= 0.17, P
t+1

=[$1.67, $2.63],
Q

t+1
=100K gallons, and SEE=$0.24, then B

t+1
= P

t+1
x Q

t+1
=

B6b = [$167K; $263K]

Where: 

BLo= 
1 {( (2 )}tP SEE+ − × x Q

t+1
= {(-0.74 + 17.44 X

t+1
)-(2 × 0.24)}x 

Q
t+1

=$167K

BHi= 
1 {( (2 )}tP SEE+ + × x Q

t+1
= {(-0.74 + 17.44 X

t+1
)+(2 × 0.24)}x 

Q
t+1

=$263K

What if someone objects to the sloppiness of the reported predic-
tion interval (i.e. nearly $100K gap between Lo and Hi estimates)? 
Unfortunately, there are only three ways to shrink a prediction 
interval: find more and better explanations, collect more data, or 
sacrifice confidence. The cruel reality of working with sample data 
is that we're forced to trade-off confidence for precision. Our first 
(precise) budget forecast—a point prediction—is "exactly wrong." 
Our second (imprecise) budget forecast—a prediction interval—is 
"approximately right."

Finally, we can hurt ourselves and others unless we remember two 
things: First, never confuse correlation with causality. A regression 
model includes explanations we believe help explain past varia-
tions in our prediction variable (e.g. fuel prices). However, if recent 
structural changes (for example supply shocks from conflicts in the 
Middle East or revolutionary innovations such as fracking, demand 
shocks from a global pandemic, etc.) dramatically alter the process 
that generated past data, then our prediction model may be worse 
than worthless—it could be misleading; Second, never extrapolate 
too far beyond the range of observed data. The further future ex-
planatory variable values are from the means of our past data, the 
sloppier the results (i.e. the wider our prediction intervals). In this 
case a point prediction is exactly wrong, and our prediction interval 
doesn't help much.

DISCUSSION AND CONCLUSION

This guide reviews several standard data analytic techniques with 
a wide variety of management applications. Public budgeting of-
fers an illustration. The better our budget estimates, the greater 

Table 7: N=12 months of estimated future global economic growth rates (%).

0.18 0.17

0.18 0.19

0.17 0.17

0.17 0.15

0.15 0.13

0.17 0.15
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the potential efficiency and effectiveness of government programs. 
The dual risk is: i) Underestimating future expenditures and pro-
gramming too little; or ii) Overestimating future expenditures, and 
programming too much. Military fuel budgets provide an illustra-
tion. Programming too little can impact future operations, training, 
equipment, or sacrifice other government priorities reprogrammed 
to fill funding gaps. But programming too much also risks sacrific-
ing government priorities, as extra funds may be discovered too late 
to be reprogrammed efficiently. To minimize costly adjustments 
and wasteful reprogramming requires better cost estimates.

Six statistical techniques were briefly summarized in the context 
of budgeting for fuel, together with hints of how to apply the tech-
niques in Excel. With no uncertainty, it’s easy to make predictions. 
The challenge arises when there is significant variability in data, 
such as fuel prices. The estimation techniques reviewed start sim-
ply, with extrapolative Forecasting and Sample Means (Averages) 
that mostly ignore variability, proceed to Confidence Intervals and 
Critical Values that attempt to capture variability, and finally ex-
plore the power of Simulation, and Regression Analysis (or “para-
metric estimation”) which attempts to explain variability. The eight 
predictions of next year’s fuel budget (B (t+1)) generated from the 
six data analytic techniques appear below:

A. Ignore Variability:

● Extrapolative forecast (Current Spot Price): B1 = $250,000

● Sample Mean (36 Months of Data): B2 = $200,000

B. Capture Variability:

● Uncertainty: 95% Confidence Interval: B3 = [$180,000;
$220,000]

● Risk: Critical Value (5% Risk of Shortfall): B4=$217,000

● Simulation:

● Uncertainty: 95% Confidence Interval B5a=[$85,000;
$330,000]

● Risk: Critical Value (5% Risk of Shortfall) B5b = $310,000

C. Explain Variability:

● Regression:

● Point Estimate B6a=$215,000

● 95% Prediction Interval B6b=[$167,000; $263,000]

So which to use? Each technique answers a slightly different ques-
tion. So the choice depends on selecting the technique that best 
matches our problem, given time, money, and the data available. 
As we move from ignoring variability, to capturing variability, and 
finally explaining variability, we enjoy progressively more confi-
dence, but sacrifice precision. To increase both confidence and pre-
cision requires more data, better data, and/or more sophisticated 
techniques, which takes time and money. Widespread application 
of these and other data analytic tools can improve public manage-
ment and budgeting. But bear in mind that sometimes, like life, 
“it’s the journey, not the destination.” The process (“journey”) 
makes us smarter which can help better understand the product 
(“destination”).

Appendix 1: Explanation of normal distribution fit to fuel price 
data

Utilizing the 36 data points for fuel price, we can model fuel price 

behavior by highlighting the fuel price data and clicking on “Dis-
tribution Fitting” in @RISK. By selecting the Normal Distribution 
and deselecting all other distributions, we have chosen a model and 
written this choice to a cell that now represents the uncertainty of 
fuel price. Figure 6 is the resulting model (Figure 6).

Caution – the Normal distribution has tails that go in both direc-
tions to infinity. By using the normal distribution as our model 
this will result in unacceptable values for the price (negative values 
and extremely high numbers). Limiting the extreme values to some 
boundary (i.e., 50 cents and $3.50) might make sense. This is espe-
cially important if your model is an input into other simulations.

Appendix 2: Explanation of triangle distribution fit for demand 
data

Sometimes there is no data available. If this is the case, a common 
modelling technique includes eliciting modelling information from 
subject matter experts (SME’s). This could result in the following 
exchange: The lowest demand that our organization has ever had is 
75k gallons and the highest demand is 127k gallons. Additionally, 
our most likely demand is something close to 100k gallons per year. 
With this information, you can directly input a triangle distribu-
tion into @RISK to represent the demand. It would look like this: 
=Risk Triangle (75000, 100000, 127, Risk Name ("Demand Data 
(gal/year)").

Since we have data, we could utilize the 36 data points for demand, 
and model demand behavior by highlighting the demand data and 
clicking on “Distribution Fitting” in @RISK. By selecting the Tri-
angle Distribution and deselecting all other distributions, we have 
chosen a model and written this choice to a cell that now represents 
the uncertainty of demand. Figure y is the resulting model (Figure 7).

Notice the parameters for this fitted distribution (75088, 
101628, 126823) are very close to what our SME’s provided 
(75k,100k,127k). That may not always be the case, and, a sound 
analytical process should review assumptions by comparing them 
to ‘real world’ data as part of the model verification and validation 
process. Also note the Triangular distribution is bounded on both 
ends, which mitigates problems encountered using a Normal distri-
bution (i.e. with tails from positive to negative infinity).

Appendix 3: Putting it all together – simulation model for an-
nual fuel costs

Using a Normal probability distribution as our model for Price and 
a Triangular probability distribution as our model for the Require-
ment (Quantity), we complete our model by simply multiplying 
these values together to get an annual budget estimate that captures 
the variability of both price and demand. After designating a cell as 
the output cell in @RISK and running our simulation model 5000 
times, Figure z is our output (Figure 8).

Note: Extreme values, such as the minimum value for this simula-
tion of -32076.15 and maximum of $460,000, are often meaning-
less. In this case, they are simply artifacts of using a normal prob-
ability distribution to model prices (with tails from negative to posi-
tive infinity). Budgets in the bulk of the probability area captured 
through confidence intervals are the only values of interest for our 
guess estimation.
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Figure 6a: 95% confidence interval from simulation of budgets.

Figure 6b: Critical value for 5% risk of budget shortfall (95% confidence of sufficient funds) from simulation of budgets.
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Figure 7: Modelling price with a normal distribution.

Figure 8: Modelling price with a triangle distribution.

Figure 9: Modelling an annual budget as the product of price and demand.
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