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Commentary
The spaceflight environment presents many stress factors such as

microgravity and cosmic radiation that have adverse effects on cell
biology and human physiology. For example, microgravity has
profound effects on all human organs and systems, such as fluid
redistribution, muscle changes and bone demineralization [1].
Microgravity has been demonstrated to inhibit tumor cell proliferation
and metastasis [2], promote cell apoptosis [3,4] and suppress
osteoblastic differentiation and mineralization leading to bone loss [5].
The cytoskeleton, as a cellular structural scaffold, plays a critical role in
maintaining cellular shape, serving as an intracellular transport
system, and modulating cell apoptosis [6] as well as tumor cell
proliferation, migration, invasiveness and metastasis [7]. The
eukaryotic cytoskeleton consists of three basic types of filaments
(intermediate filaments, actin filaments and microtubules). Integrins
are transmembrane proteins that are core constituents of cell-matrix
adhesion complexes combined with cell surface integrins, intracellular
cytoskeleton binds to the extracellular metrix at cellular membrane
sites named focal adhesions [8]. The integrin-binding proteins (talin,
vinculin and paxillin) recruit focal adhesion kinase (FAK) to focal
adhesions. After binding of FAK to focal adhesions, focal adhesion
complexes are formed composing another group of the ras homolog
gene (Rho) family GTPases [9]. The Rho family members consist Rho
family member-A (RhoA), cell division-control protein-42 (Cdc42)
and ras-related C3 botulinum-toxin substrate-1 (Rac1), which control
actin-binding protein’s function to compose higher order structures
such as stress fibers (actin/myosin bundles), lamellipodia (membrane
ruffles at the leading edge) and filopodia (membrane protrusion) [10].
The Rho family members mediate some molecular pathway signals
such as the mTORC1 (mammalian target of rapamycin complex-1)
pathway [11-15]. FAK which regulates RhoA [16], mTORC1 and
AMPK (AMP-activated protein kinase) pathways controls cell survival,
proliferation, migration and differentiation [17]. In multicellular
organisms, it is now fully clear that dynamic equilibrium of cell
numbers is finely adjusted by cell division and rate of cell death. The
later process is named as programmed cell death also termed as
‘apoptosis’ that was first raised in 1972 [18]. For the last four decades,
dissection of the apoptotic cell death has unveiled that apoptosis is
mediated by proteolytic enzymes called caspases [19]. Caspases have
inactive precursors or procaspases in all cells, which are activated by
the intracellular pathway regulated by Bcl-2 family members divided
into anti- and pro-apoptotic members, and the extracellular pathway
involved with activation of initiator pro-Caspase-8 being able to
subsequently activate effector caspases [20]. It has been established
that multiple pathways control formation of cell apoptosis, such as

mTORC1, nuclear factor-kappa B (NF-κB), extracellular signal-
regulated kinase-1/2 (ERK1/2) and P53/Puma [21].

Enhanced cellular apoptosis was observed in normal thyroid cells,
human lymphocytes (Jurkat) and embryonic stem cells during
microgravity in spaceflights or under simulated microgravity (SMG), a
ground-based method using a random positioning machine (RPM) to
mimic microgravity condition in space [4,6,22]. It has been
demonstrated that SMG altered cytoskeleton and enhanced cell
apoptosis in chondrocytes, thyroid cancer cells, endothelial cells and
osteoblasts [23-27]. SMG was also found to induce thyroid carcinoma
cell apoptosis via up-regulation of apoptosis-associated Fas, p53 and
Bax molecules and down-regulation of an anti-apoptotic protein, Bcl
[28]. It was demonstrated that microgravity inhibited the NF-kB
pathway [29], which negatively regulates cell apoptosis [30]. We
previously showed that B16 melanoma BL6-10 cells cultured under
SMG (1 μg) altered cytoskeleton structure by losing most stress fibres
and lamellipodia, and enhanced cell apoptosis through suppressing
NF-κB pathway leading to up- and down-regulated pro-apoptosis
(caspases 3,7,8) anti-apoptosis (Bcl-2 and Bnip3) molecules, compared
to cells cultured under the control ground condition (1 g) [31].
However, the upstream signaling responsible for SMG-induced
suppression of NF-κB leading to enhanced cell apoptosis is still
unknown. It has been reported that signaling FAK and RhoA were
associated with regulation of cell survival and protection of cells from
apoptosis [32,33] and that mTORC1 regulated NF-κB controlling cell
apoptosis via up-regulation of anti-apoptosis Bcl-2 molecule [34]. With
a clinostat modeling SMG for the cultured BL6-10 melanoma cells, we
demonstrated that SMG also reduced cell focal adhesions and inhibited
activities of FAK and RhoA signaling [31], raising a possibility that
FAK and RhoA might be the upstream signaling responsible for SMG-
induced suppression of mTORC1-controlled NF-κB, leading to
enhanced cell apoptosis. To assess the possibility, we performed SMG
studies by using BL6-10 melanoma cells and demonstrated that SMG
down-regulated mTORC1-downstream molecules S6K and ELF4E as
well as mTORC1-regulated NF-κB and Bcl-2 [31,35] and switched
cellular localization of phosphorylated NF-κB (pNF-κB, Ser337) from
nuclear to cytoplasm [31,35]. To confirm the critical role of mTORC1
in SMG-induced enhancement of cell apoptosis, we used rapamycin,
an inhibitor of mTORC1; in treatment of BL6-10 cells cultured less
than 1 g. We showed that rapamycin administration increased cell
apoptosis via down-regulation of the mTORC1/NF-κB/Bcl2 pathway
in cells under 1 g [31,35]. To confirm the critical up-stream role of
FAK/RhoA in SMG-induced enhancement of cell apoptosis via
inhibition of the mTORC1/NF-κB pathway, we used an E. coli toxin
CNF1 (a broad spectrum activator of Rho proteins) [36,37] in our
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SMG studies. We demonstrated that CNF1 significantly increased focal
adhesions and reduced apoptosis in cells under SMG [38]. In addition,
we further showed that CNF1 activated FAK signaling and enhanced
RhoA activity and elucidated that CNF1 up-regulated the
mTORC1/NF-κB/Bcl2 pathway in cells under SMG. Therefore, our
data indicate that SMG reduces focal adhesions and FAK/RhoA
activity, leading to promoting cell apoptosis via suppressing FAK/
RhoA-regulated mTORC1/NF-κB/Bcl2 pathway (Figure 1).

Figure 1: Schematic diagram presenting molecular pathways
responsible for SMG-induced alterations in cell biology. SMG
reduces focal adhesions and FAK/RhoA activity, leading to
enhanced cell apoptosis via suppressing FAK/RhoA-regulated
mTORC1/NF-κB/Bcl2 pathway, and leading to reduced tumor cell
proliferation and metastasis via modulating FAK/RhoA-regulated
mTORC1 and AMPK pathways.

Microgravity, as an external stress, can affect not only apoptosis but
also cell proliferation and metastasis [39]. Microgravity has been
reported to inhibit proliferation of leukemia and lymphoma cells
[40,41]. It has also been demonstrated that microgravity inhibited cell
growth via down-regulation of cell cycle-regulating proteins such as
Cyclin D1 and B1 in breast and colorectal cancer cells [42,43]. In
addition, SMG also inhibited migration and metastatic potential of
A549 lung adenocarcinoma cells via decreased expression of MKI67 (a
nuclear protein necessary for cellular growth) and MMP2 (matrix
metalloproteinase-2) related to cancer metastasis [2,44] and weakened
metastatic potential of melanoma cells via reduced expression of
guanylyl cyclases A and B (GC A/B) [45]. Kinase mTORC1 is a central
regulator for cell growth via activation of EIF4E (eukaryotic initiation
factor 4E) and S6K (S6 kinase) and a sensor of cellular energy status
via triggering glycolysis metabolism [46]. Kinase AMPK also acts as a
sensor of cellular energy status via activating mitochondrial biogenesis,
leading to fatty acid oxidation (FAO) for energy production [47]. Both
mTORC1 and AMPK have important effects on regulation of cellular
metabolism for maintenance of energy homeostasis [48]. Recently, it
has been demonstrated that SMG inhibited the mTORC1 pathway
[49,50]. However, the molecular mechanism underlying the above
SMG-induced changes in cell biology and cellular pathways [45] is still
elusive. Since FAK and RhoA signaling were found to be up-regulated
in cancer cells and related to cancer aggressiveness and metastasis
[17,51,52], we assumed that FAK and RhoA might be the upstream
signaling responsible for SMG-induced suppression of mTORC1,
leading to inhibition of cell proliferation and metastasis. With
clinostat-modelled SMG, we examined SMG’s effects on BL6-10

melanoma cell proliferation, adhesion, invasiveness and metastasis
compared to cells under 1 g. We found that SMG altered cytoskeleton
structure and reduced formation of cell focal adhesions and down-
regulated expression of pFAK (Tyr397) and RhoA as well as mTORC1-
regulated pS6K (Ser235) and pELF4E (Ser209) and inhibited cell
glycolysis metabolism in melanoma cells under SMG [38]. It has been
reported that mTORC1 inhibited AMPK signaling via activation of
S6K [53]. Interestingly, we found that SMG up-regulated AMPK
pathway, leading to activation of mitochondrial biogenesis and FAO
for energy production [38], which is suitable for cells in quiescence
such as SMG-treated cells. Tumor aggressiveness is closely associated
with tumor metastasis involving multiple steps, such as cell adhesion,
migration and invasion [54,55]. MMP9 controlled by signaling
through FAK and RhoA [56] has been found to modulate tumor cell
invasion and metastasis [57]. BL6-10 melanoma cell surface
glycoprotein Met72 was found to be associated with high metastasis of
BL6-10 cells to lungs [58]. In this study, we demonstrated that SMG
inhibits expression of MMP9 and Met72, leading to significant
reduction in cell adhesion and invasiveness in vitro and tumor
metastasis to lungs in vivo. To confirm the critical role of mTORC1 in
SMG-induced inhibition of tumor cell proliferation and metastasis, we
used rapamycin in treatment of BL6-10 cells cultured less than 1 g. We
showed that rapamycin administration down-regulated mTORC1-
regulated S6K and ELF4E and glycolysis, but up-regulated AMPK and
activated mitochondrial biogenesis [31,35]. In addition, rapamycin
administration also significantly inhibited BL6-10 melanoma cell
proliferation and lung metastasis [31,35]. To confirm the critical up-
stream role of FAK/RhoA in SMG-reduced cell proliferation and
metastasis via inhibition of the mTORC1 pathway, we used an E. coli
toxin CNF1 [36,37] in our SMG studies. We demonstrated that CNF1
was able to convert (i) SMG-induced inhibition of FAK/RohA activity
and mTORC1 pathway, (ii) SMG-induced suppression of expression of
these metastasis-related molecules, and (iii) SMG-induced reduction
of cell focal adhesions, proliferation and metastasis in cells under SMG
[38]. In this study, we for the first time, reveal that SMG dramatically
reduces formation of focal adhesions and inhibits cell proliferation and
metastasis through FAK/RhoA-mediated inhibition of the mTORC1
pathway and activation of the AMPK pathway (Figure 1). Microgravity
has been demonstrated to suppress osteoblastic differentiation and
mineralization leading to bone loss [5] often seen in rheumatoid
arthritis [59]. However, the underlying mechanism for SMG-induced
bone loss is not clearly understood. We, therefore, assume that the
FAK/RhoA regulatory network may be important in other SMG-
induced physiological alterations such as SMG-induced bone loss [5].
To assess this assumption, conducting similar SMG experiments using
MC3T3 pre-osteoblast cell line [23] is underway in our laboratory.

Taken together, our data reveal a new molecular mechanism for
SMG-induced alterations in cell biology, that SMG reduces focal
adhesions and FAK/RhoA activity, leading to (i) enhanced cell
apoptosis via suppressing FAK/RhoA-regulated mTORC1/NF-κB/Bcl2
pathway, and (ii) reduced tumor cell proliferation and metastasis via
modulating FAK/RhoA-regulated mTORC1 and AMPK pathways
(Figure 1). Thus, FAK/RhoA signaling may play a critical role in SMG-
induced alterations in cell biology, and targeting FAK/RhoA regulatory
network may become an important therapeutic strategy for astronauts
in spaceflights and for other human diseases.
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