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Introduction
Wearable-based activity recognition (AR) systems are typically 

built to recognize a predefined set of common activities such as 
sitting, walking, and running [1-3]. AR has captured the attraction 
of computer science communities due to its capabilities on providing 
supporting personalized information and its many applications in 
human-computer interface [4], medicine [5], insurance businesses 
[6], sports [5] and sociology [7]. There are variety of studies on AR 
systems for data provision [8-11]. Moreover, there are many studies 
centred on developing novel nonlinear models for activity recognition 
problem [12,13]. However, there is no literature found comparatively 
investigation on the performance of the well-known classification 
models in Activity Recognition problem. In this paper, Logistic 
Regression, Support Vector Machine, K-Nearest Neighbors’, ’Artificial 
Neural Network with one hidden layer’ Naive Base, ’Decision Tree’ and 
Random Forest models have been trained and tested. The performance 
of these models has been examined by both prediction accuracy and 
running time. Also, the effectiveness of principal component analysis 
(PCA) preprocessing on each model is investigated. More-over, the 
important role of hyper-parameters for each model is discussed and 
visualized. In this paper, it is showed that Random Forest provides 
the best performance among other models. Furthermore, while PCA 
has improved the learning process for models such as KNN, Artificial 
Neural Network with one hidden layer and SVM, it worsens the 
prediction accuracy of random forest or decision tree models (Figure 
1).

Problem Statement
Research studies in Activity recognition have been focused on 

developing novel models for rare activities and for unbalanced training 
data and novel methods for data collections [2,12-15]. However, there is 
a gap for a comprehensive study of the performance of the conventional 
machine learning models on activity recognition. In this research, a 
comprehensive study is performed over several well-known supervised 
learning algorithms. Moreover, the effectiveness of dimensionality 
reduction using PCA [16] on these models was studied.

Methodology
A large AR dataset [1] composed of 346 K instances almost 

uniformly distributed over 12 activities is used in this study. The 

A Comparative Study on Machine Learning Classification Models for 
Activity Recognition 
Mohsen Nabian*
Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, United States

Abstract
Activity Recognition (AR) systems are machine learning models developed for cell-phones and smart wearables 

to recognize various real-time human activities such as walking, standing, running and biking. In this paper, the 
performance (accuracy and computational time) of several well-known supervised and unsupervised learning models 
including Logistic Regression, Support Vector Machine, K-Nearest Neighbors’, Naive Base, ’Decision Tree’ and 
Random Forest are examined on a dataset. It is shown that Random Forest model outperforms other models with 
accuracy over 99 percent. It is shown that PCA significantly improved the performance of Artificial Neural Network with 
one hidden layer and SVM models in both accuracy and time, while PCA showed to have negative impacts on Random 
Forest or Decision Tree models by increasing the running time and decreasing the prediction accuracy.

*Corresponding author: Mohsen Nabian, Department of Mechanical and
Industrial Engineering, Northeastern University, Boston, MA, United States, Tel: +1 
617-373-2000; E-mail: monabiyan@gmail.com

Received September 26, 2017; Accepted October 04, 2017; Published October 
10, 2017

Citation: Nabian M (2017) A Comparative Study on Machine Learning 
Classification Models for Activity Recognition. J Inform Tech Softw Eng 7: 209. doi: 
10.4172/2165-7866.1000209

Copyright: © 2017 Nabian M. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Figure 1: Activity recognition process pipeline.

data is shuffled and then normalized by linear map-ping to the range 
(0,1). 80 percent of the data points were selected for training and the 
remaining 20 percent were selected for testing. All the aforementioned 
models were trained with training data and tested with the test data. 
The running time, as well as the accuracy of these models, were 
comparatively discussed. The effect of hyperparameters of four models 
(Logistic Regression, KNN, SVM and Neural Network with one hidden 
layer) were elaborated on the accuracy of the test data prediction. And 
finally, the effect of component analysis (PCA) on the performance of 
these models was studied.

Theory
Table 1 summarizes the hypothesis, approach and cost functions 

of a few models used in this paper. Since the problem is multi-class 
classification, softmax algorithm is used for Ridge-Regression and 
softmax activation function is used for the last layer of Neural Network. 
Furthermore, using the method of One-vs-all [17], SVM coefficients 
were classified 12 times to address the multiclass classification problem. 
Notice that Ridge Regression is a linear classifier, while SVM, KNN 
and ANN are nonlinear. Figures 2 and 3 provides the roadmap of this 
machine learning process. It is expected to have a better prediction 
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Table 1: Summary of the mathematical background of classification models.

Figure 2: Type of activities (labels) of the dataset.

Figure 3: Machine learning process road map.

for non-linear classifiers due to the nonlinearity of the sensor data for 
various activities. The hyperparameter for each classifier should be set 
to a value that maximizes the accuracy of the model over the test data. 
In the experiment section, hyperparameters for each classification will 
be examined. PCA convert a set of observations of possibly correlated 
variables into a set of values of linearly uncorrelated variables called 
principal components. Eliminating components that contain low 
variation will decrease the dimension of the observation without losing 
a significant amount of information. Dimensionally reduced data is 
obtained by the following:

 y(i) = uT(1)                                  x(i) x        (1)

where x and u are calculated as:

1      N
 x = N Xi x(i)                                                                                    (2)

 x = ux Xx Vx 
T                                                                                    (3)

u = ux (:; 1: d)                                                                                   (4)

and d is the reduced dimension of the data.

Results and Discussion
Data description

The dataset [1] comprises body motion and vital signs recordings 
for ten volunteers of diverse profile while per-forming several 
physical activities. Sensors placed on the subject’s chest, right wrist 
and left ankle are used to measure the motion experienced by diverse 
body parts, namely, acceleration, the rate of turn and magnetic field 
orientation. The sensor positioned on the chest also provides 2-lead 
ECG measurements, which can be potentially used for basic heart 
monitoring, checking for various arrhythmia or looking at the effects 
of exercise on the ECG. Figure 4 illustrates the location of the sensors 
and the type of measurements they convey. The activities selected, are 
among the most common in people’s daily life. The full list of activities 
is depicted. In average, there are about 30000 data points allocated for 
each activity except the last activity (jump front back) which has 10000 
data point, which is still a very reasonable amount of data. In overall, 
the data set is quite well prepared for model fitting.

Experimental results

The performance of different learning algorithms on the same 
AR dataset is explored and compared. Moreover, the effect of 
hyperparameters on the accuracy of three classifiers are also investigated. 
Finally, it is shown whether PCA as preprocessing step can decrease the 
running time of each algorithm while maintaining the accuracy.

Performance measurement of supervised algorithms on AR 
dataset: Here, seven supervised learning classifiers are trained on 
the AR dataset and their prediction accuracy for the test data were 
measured. Figure 5 demonstrates a comparison of accuracies of 
the classifiers. It is shown in Figure 5 that KNN and Random Forest 
provided prediction accuracy of >99% while Decision Tree, as well as 
a simple Artificial Neural Network performance, were >98%. However, 
Naive Base and Ridge Logistic Regression, as well as SVM appeared to 
perform relatively poorly. Naive Base assumes independency between 
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Figure 4: Dataset features for the activity recognition (AR) problem.

Figure 5: Prediction accuracy of classification models over AR dataset.

features of the observations. This assumption is not descent in the case 
of Activity Recognition since there are some significant correlations 
between the values of the sensors. For instance, in the case of lying 
down, all sensors may measure relatively small values, or in the case of 
running, the values of sensors may vary dramatically. Therefore, some 
dependencies exist between sensor values (features) and hence Naive 
Base does not provide very high accuracy. Moreover, due to the non-
linearity of the data for different activities, poor predictions of linear 
models such as Ridge Logistic Regression and SVM with no kernel 
which are both linear classifiers.

Besides the accuracy, the running time of classifiers is an important 
factor for the performance of the machine learning classifiers. The 
importance of the running time will become tangible once the 
dimension of the data becomes large. The running times of classifiers 
on the AR dataset are provided in the Table 2.

Random Forest and Decision Tree appeared to be fast while KNN 
and SVM appeared to have large computational running time.

The effect of hyperparameters on the performance of the models: 
Different settings for hyperparameters in models result in different 
prediction accuracy of models. Therefore, it is essential to investigate 
the optimum hyperparameter for each classification model for the 
given training data.

Here, Ridge Logistic Regression, KNN, SVM and Artificial Neural 
Network with one hidden layer are investigated for the optimum 
corresponding hyperparameters (Figure 6). In Ridge Regression, is the 
hyperparameter that penalizes the optimization objective function over 
the magnitude of the model parameters. Large may prevent over-fitting 

of the model to the training data. However, very large may cause bias in 
the model which is depicted in Figure 6. With up to around 100, there is 
no negative effect found on the prediction accuracy, however increasing 
above 100, a gradual decrease in the model accuracy is observed.

In KNN, K specifies the number of observations to be considered as 
neighbours for taking the majority vote. Figure 6 shows that increasing 
K in the case of AR dataset will decrease the accuracy. In SVM, C 
penalizes the observations that are not in the functional margin of 1. 
In other words, small Cs allows for some misclassification of data while 
large C strictly penalize misclassifications. C is particularly useful when 
the data is not linearly separable. According to Figure 6, the optimum 
C is between 0.1 to 1. That is certainly a hint that the data is not linearly 
separable and requires relaxation. However, high relaxation may have a 
negative impact on the accuracy. In Artificial Neural Net-work with one 
hidden layer, H is the hyperparameter which determines the number of 
neurons in the middle layer of the network. As H increases, the Neural 
Network model will have more parameters to learn. Despite other 
models, Artificial Neural Network accuracy monotonically improves by 
increasing the size its parameter. Based on Figure 6, low values of H in 
(1, 50) is not enough to encompass the complexity of the data. However, 
for H greater than 50 and the model can well capture the nonlinearity 
of the data.

The effect of dimensionality reduction on the performance of 
classification models: PCA is the technique used for the dimensionality 
reduction of the dataset. This section intends to investigate how 
dimensionality reduction will improve the running time and to explore 
whether the classification accuracy will be affected after PCA or not. 
In PCA, we explore principal directions in the high dimensional data 
until we capture a large fraction of total variance f in the original 
dataset. Here, the running time and accuracy of the classification 
models that were discussed earlier were examined under the range 
of f = (0.99, 0.90). Figure 7 demonstrates how classification accuracy 
may alter by reducing dimensions of the data using PCA and Figure 
8 projects the effect of dimensionality reduction on the running time 
of the learning and prediction process of supervised learning models. 
It is very interesting that the accuracy of Neural Network with one 
hidden layer improves around 1 percent although we have lost some 
information in data by reducing the dimensions of the data with PCA 
step. This improvement still exists for f=0.90. This is consistent with 
the findings of Mohammad Saleh [18]. Accordingly, Neural Network 
works more efficiently on a dataset that has their features orthogonal 
or independent. Also, according to Figure 8, the running time of 
Neural Network drastically decreases by PCA up to 20 percent of the 
time required using the original data. Also, Neural Network is the only 
model that has its prediction accuracy improved by dimensionality 
reduction using PCA. The prediction accuracy of KNN and Random 
Forest drop only less than 1 percent for a wide range of f = (0.99, 0.90). 
According to Figure 8, there is around 60 percent running time drop for 
KNN. That implies that dimensionality reduction using PCA is highly 

Classification Model Time (sec)
Ridge Logistic Regression 64.3

K-nearest neighbor 149.2
Random Forest 19

Naïve Base 0.6
Decision Tree 15.2

Support Vector Machine 131.2
Artificial Neural Network 2052

Table 2: Running time for training and testing of classification models over AR 
dataset.
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Figure 6: Effect of hyper parameter values on the prediction accuracy of 
classification models; from left to right: ridge logistic regression, knn, svm, neural 
network.

Figure 7: Effect of dimensionality reduction on the prediction accuracy of 
classifiers. The values of prediction accuracies are normalized with values in 
Figure 6.

Figure 8: Effect of dimensionality reduction on the running time of classifiers. 
The values of running time are normalized with values in Table 2.

recommended for KNN. However, PCA is apparently increasing the 
running time of Random Forest which makes the PCA preprocessing 
ineffective and not recommended for Random Forest. In SVM, PCA 
with f=0.99 works effectively since the prediction accuracy doesn’t 
change significantly while the running time may drop over 60 percent. 
For Decision Tree similar to Random Forest, PCA is not recommended 
since it has increased the running time.

Conclusion
In this paper, Activity Recognition (AR) problem was investigated 

using several well-known classification models in machine learning. 
Due to non-linearity nature of the AR dataset, nonlinear classifiers 
outperforms linear models. Models including KNN, Neural Network 
with one hidden layer and Random Forest provided more than 99 
percent prediction accuracy for this problem, however, by considering 
running time, random forest indicated the highest performance with 
respect to other models. Moreover, the effect of hyperparameters on 
the prediction accuracy of different models was investigated and lastly, 
dimensionality reduction is applied as a preprocessing step to these 
models. By investigating the running time and prediction accuracy of 
different models after the PCA. It turned out PCA may improve the 
performance of Neural Network with one hidden layer, KNN and SVM 
while it has negative effects on the Random Forest and Decision Tree 
models.
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