
International Journal of Advancements in Technology         http://ijict.org/                             ISSN 0976-4860 

 

 

Vol. 3 No.1 (January 2012)©IJoAT  25 

 

A Comparative Study of Static Object Oriented Metrics 

                                       

Manik Sharma
1
, Gurdev Singh

2,
  Anish Arora

2 
And Parneet Kaur

2
 

1Department of Computer Science & Applications, Sewa Devi S.D. College Tarn Taran, Punjab, India 

manik_sharma25@yahoo.com 

2Department of Computer Science & Engineering, Adesh Institute of Engineering and Technology Faridkot, 

Punjab, India 

Corresponding Author Email: singh.gndu@gmail.com 

                                                                                         

Abstract                                                                                       

Software metrics is one consistent topic of research in software engineering. The role of software 

metrics is to find significant estimates for software products and directs us in intriguing 

managerial and technical decisions.  Software metrics have become an integral part of software 

development and are used during every phase of the software development life cycle. Research in 

the area of software metrics tends to focus predominantly on static metrics that are obtained by 

static analysis of the software artifact. The goal of this study is to perform the comparative 

analysis on static metrics for object oriented programming. This study is done to analyze the 

different object oriented techniques like class, constructor, and inheritance. The various metrics 

under study are AHF, AIF, DIT, MHF, MIF, AVPATHS, and SEIMI etc. The study of such 

metrics can become a useful tool for reverse software engineering.  

 

Keywords: Object oriented programming, Metrics, Measures. 

1. Introduction 

The focus of Software engineering is to develop and maintain the software for business 

use. The objective of software engineering is to develop cost effective and quality oriented 

software products for small, medium and large scale. Software engineering provides a range of 

facility to realize the software completely for its maintenance or for its reusability.  Software 

metric is an important component of software engineering. There are number of software metrics 

developed by different researchers, but some of them are helpful to software developer. Software 

metrics acts as an indicator for software attribute. The name software metric
 [1][2]

 is associated 

with varied measurements of computer software and its development. Software metrics provides 

the relationship between collected measures. With the help of software metric anybody can judge 

of measure the performance of various features of the software. Computer science researchers are 

putting all their efforts in measuring quantitative information from software component. 

Software metric 
[3]

 plays a major role in civilizing the quality of software, planning its budget, its 

cost estimation etc. We apply some software logical of mathematical technique to software 

process or product to supply or improve engineering and management information
 [4]

. Some of 

the software metric’s objective 
[5][6]

 are perception, software inspection, planning, optimization 

and quality improvement. Numbers of metrics are developed for different purposes; some of 

them are very beneficial for the programmer or developer. The complexity in the calculation of 

software metrics provides hindrance in the research and usability of software metrics. Practically 

mailto:singh.gndu@gmail.com


International Journal of Advancements in Technology   http://ijict.org/    ISSN 0976-4860 

 
 

Vol. 3 No.1 (January 2012)©IJoAT  26 

 

the metrics can be categorized 
[7]

 into different categories like metrics for analysis model, metrics 

for design model, metrics for source code, metrics for testing, metrics for quality assurances etc.  

Further according to Roger S Pressman a metric should possess features like simple & 

computable, consistent, platform autonomous, objective, empirically and intuitively credible.  

Today a project is of no sense if it does not have any object oriented features. The 

perception of object oriented analysis and design in software engineering has many rewards that 

help the programmer to realize and develop the program efficiently.  Object oriented metrics 

helps a lot to a programmer or developer to understand and unravel the object oriented problem 

easily and precisely. Object oriented metrics helps in analyzing the usefulness of object oriented 

technologies or in simple terms Object-oriented metrics depict characteristics of object-oriented 

programming.  

1.1 Objectives: The objectives of this paper are: 

 To understand the concept of static metric. 

 Measuring the attributes of static metrics for object oriented programming techniques. 

 Comparing the various static metrics for different Object Oriented techniques. 

 To find the mathematical relation of different object oriented technique with different object 

oriented static metrics under study. 

 Finding an optimized object oriented technique in terms of complexity by using the concept 

of measured metrics. 

2. STATIC METRICS 

Software metrics plays an important role in project coordination and project management. 

With the help of software metrics different attributes of a project can be measured. Software 

metrics also helpful in the area that is prone to an error. There are different types of metrics like 

size metrics, quality metrics, satiability metrics, object oriented metrics etc. The credit of 

introducing the concept of software metrics goes to Wolver ton who performs a research on 

production ratio of the programmer by using the concept of LOC i.e. line of code. Software 

metrics explore the attributes of software to measure the different characteristics of software.. 

Metrics helps in to measure the various attributes like cost of software development, its 

complexity, number of operands, operators and statement, hiding factor, coupling factor etc. 

Predictive metric are normally associated with software product. According to Somerville the 

metric can be classified into two categories i.e. control metric and predictive metric. Predictive 

software metric 
[5]

 plays a major role in determining both static as well as dynamic characteristics 

of the software. In this paper the focus is given on static predictive metrics of object oriented 

programming. 

2.1 Static metric:  First static metric [8] (LOC/KLOC) was used to measure the productivity of a 

program. The most commonly used complexity metric before 1990 was cyclomatic [9] 

complexity that was measured by McCabe. He uses the flow graph and some mathematical 

equations to compute software complexity. This metric was used in code development risk 

analysis [10], change risk analysis in maintenance and in test planning.  In 1976 McCabe [11] 

defined the cyclomatic complexity number metric. The metric measures the number of 

independent paths through a software module. Although cyclomatic complexity is widely used, 



International Journal of Advancements in Technology   http://ijict.org/    ISSN 0976-4860 

 
 

Vol. 3 No.1 (January 2012)©IJoAT  27 

 

critique on it exists claimed that it’s based on poor theoretical foundations and an inadequate 

model of software development. The cyclometic complexity has been selected to be a part of the 

benchmarks. 

3. ANALYSIS OF OO METRICS 

To perform the comparative analysis of the object oriented techniques like simple class, 

inheritance, constructor and parametric constructor, the code is implemented in one of the 

famous object oriented programming language, an invention of Bjarne Stroustrup i.e. C++. With 

the help Object-oriented one can verify the victory or malfunction of a process or person, and to 

quantify improvements throughout the software process. Object oriented metrics can be used to 

support a examine quality oriented and reliable code from different programming techniques. 

With the development of object oriented paradigm [11] the design of software become better, 

reliable and easier to access as compare to traditional structured programming techniques. We 

have same program by using different above said technique and calculated various attributes of 

object oriented programming in the form of object oriented static metrics [12] [14]as given below 

in the table 1. 
Table 1: Static Metrics versus OO Techniques 

 

Parameters Simple Class Inheritance Constructor Parametric 

Constructor 

AHF 1 1 1 1 

AIF 0 0.67 0 0 

AVPATHS 0 0 0 0 

ACLOC 18 12.50 18 18 

AMLOC 6.0 6.67 5.67 5.67 

PDIT 0 1 0 0 

LOC 28 36 27 27 

MHF 0 0 0 0 

MIF 0 0 0 0 

NCLASS 1 2 1 1 

SEIMI 117.98 112.49 119.33 118.95 

SLOC 28 36.0 27 27 

 

Description of Parameters 
 

AHF This metric is used to measure the invisibilities of attributes in classes. The 

attributed invisibility is defined as the percentage of the total classes from 

which the attribute is not visible. 

AIF Attribute inheritance factor 

AVPATHS Average Depth of Paths is calculated by counting the number and size of all 

paths from all methods, and then dividing that number by the number of 

methods which had other method calls.  In other words, the average depth of 

paths from methods that have path at all. 

ACLOC Average lines per class: This metric gives the average Class size in terms of 

LOC. 



International Journal of Advancements in Technology   http://ijict.org/    ISSN 0976-4860 

 
 

Vol. 3 No.1 (January 2012)©IJoAT  28 

 

AMLOC Average lines per method: This metric gives the average Method size in terms 

of LOC. 

PDIT Depth of Inheritance tree: The Depth of Inheritance Tree for a Project is the 

deepest or maximum of all inheritance trees within the project. 

LOC Lines of code: Number of Lines in the project, including source, whitespace 

and comments.  

MHF Method Hiding Factor is one of the important metrics of object oriented 

programming that is calculated by summing the visibility of each method in 

respect to the other classes in the project. It is used to measures the 

invisibilities of methods in classes. The invisibility of a method is the 

percentage of the total classes from which the method is not visible. 

MIF Method inheritance factor [15] gives the information about the impact of 

inheritance in your file or program.  It is calculate as ratio of inherited 

methods to the total number of methods. 

NCLASS It is another static metrics that count the number of classes in a program. 

SEIMI SEI Maintainability Index is one of the important measures of maintenance. 

SEIMI is a measure of the maintainability of the project, as described by the 

Software Engineering Institute. 

SLOC Source lines of Code [10] are an important measure of source line of code. 

Counting lines is used for estimating the amount of upholding or maintenance 

required and it can be used to normalize other software metrics. 

 

The following diagrams(1(a),1(b),1(c),1(d),1(e), 1(f) & 1(g)) how simple class, inheritance, 

constructor and parametric constructor affect the various object oriented metrics like ACLOC, 

AMLOC, LOC, SEIMI. 

 

18

12.5

18 18

0

5

10

15

20

Simple Class Inheritance Constructor Parametric 
Constructor

ACLOC

ACLOC

Log. (ACLOC)

 
Figure 1(a): AMLOC versus Object Oriented Techniques 

 

6

6.67

5.67 5.67

5
5.2
5.4
5.6
5.8

6
6.2
6.4
6.6
6.8

Simple Class Inheritance Constructor Parametric 
Constructor

AMLOC

AMLOC

Log. (AMLOC)

 
Figure 1(b): AMLOC versus Object Oriented Techniques 



International Journal of Advancements in Technology   http://ijict.org/    ISSN 0976-4860 

 
 

Vol. 3 No.1 (January 2012)©IJoAT  29 

 

28

36

27 27

0

5

10

15

20

25

30

35

40

Simple Class Inheritance Constructor Parametric 
Constructor

LOC

LOC

Poly. (LOC)

 
Figure 1(c): AMLOC versus Object Oriented Techniques 

 

 
Figure1 (d): SEIMI versus Object Oriented Techniques 

 

 
Figure1 (e): SLOC versus Object Oriented Techniques 

 

0

20

40

60

80

100

120

140

Simple Class Inheritance Constructor Parametric 
Constructor

AHF

AIF

AVPATHS

ACLOC

AMLOC

PDIT

LOC

MHF

MIF

 
Figure1(f): Analysis of metrics versus OO techniques  

 

0

20

40

60

80

100

120

140

AH
F

AI
F

AV
PA

TH
S

AC
LO

C

AM
LO

C

PD
IT

LO
C

M
H

F

M
IF

N
CL

AS
S

SE
IM

I

SL
O

C

Simple Class

Inheritance

Constructor

Parametric Constructor

 
 Figure1 (g): Analysis of metrics versus OO techniques 

 

From the above analysis it can be concluded that mathematical variation of different metrics like 

ACLOC, AMLOC, LOC with above said object oriented technique are in logarithmic or in 

polynomial form is as shown below in the following table. By using the following set of equation 

one can easily calculate the following object oriented metric for simple class. 
 

 

 

 



International Journal of Advancements in Technology   http://ijict.org/    ISSN 0976-4860 

 
 

Vol. 3 No.1 (January 2012)©IJoAT  30 

 

Table 2: Mathematical Equation versus Metrics  

 
Metric Curve Equation 

ACLOC Logarithmic Y=.514ln(x)+16.21 

AMLOC Logarithmic Y=-0.33ln(x)+6.268 

LOC Polynomial y = -2x2 + 8.8x + 22.5 

SEIMI Logarithmic y = 1.421ln(x) + 116.0  

SLOC Polynomial y = -2x2 + 8.8x + 22.5  

NCLASS Polynomial y = -0.25x2 + 1.15x + 0.25  

 

Halstead has brought the revolution in the field of metric by collaborating information science 

and psychology.  By using the concept of Halstead metrics an analyst is able to compute the size, 

complexity, volume, length, difficulty of a project. The basic attributes of Halstead metrics are 

n1,n2, N1 & N2. 

 
Table 3: Analysis of Main Method With different object oriented techniques 

 

n1 n2 N1 N2 V(G) V’(G)  D E V LOC 

Simple Class 1 6 2 8 1.0 4.0 0.67 18.72 28.07 8.0 

Inheritance 1 9 2 10 1 4.0 .56 22.15 39.86 9.0 

Constructor 1 5 1 6 1.0 3.0 .60 10.86 18.10 7.0 

Parametric 

Constructor  1 7 1 8 1 3.0 .57 15.43 27.0 7.0 

 

n1,n2, N1, 

N2 

 

Halstead [13] has proposed different metrics for measuring the size of a program he uses 

different variables n1,n2, N1,N2 the number of distinct operators, number of distinct 

operands, number of operators and number of operands respectively. 

V (G) Cyclometic Complexity: it is one of the important measures of programming code. 

Normally the introduction of conditional and looping statement adds some complexity in 

the program. The concept of cyclometic complexity is given by McCabe. Mathematically 

it is calculated as V(G)=e-n+p  

V’ G):  

 

Extended Cyclometic Complexity 

D:  

 

Halstead program difficulty 

E:  Halstead Program Effort metrics helps in determining the programming effort required to 

develop project. 

V Halstead Program Volume [16] is one the important metrics that instruct the analyst to 

consider the programming language while calculating the length of the program. In 

technical terms it is minimum number of bits that are used to encode the program. 

 

LOC: It is one the basic static metric that is used to measure the size of code segment. It helps in 

measuring the cost of project in an effective way. 

 



International Journal of Advancements in Technology   http://ijict.org/    ISSN 0976-4860 

 
 

Vol. 3 No.1 (January 2012)©IJoAT  31 

 

The following figures 2(a), 2(b), 2(c), 2(d), 2(e) , 2(f) and 2(g) shows the variation of various 

factor like cyclometic complexity, extended cyclometic complexity when compared with 

different object oriented techniques i.e. simple class, inheritance, constructor and parametric 

constructor. 

 

 
Figure 2(a) : Cyclometic complexity versus various OO 

Techniques 

 
Figure 2(b) : Cyclometic complexity versus various OO 

Techniques 

 
Figure 2(c): Programming Effort versus OO Techniques 

 
Figure 2(d) : Programming Vocabulary versus OO Techniques 

0

2

4

6

8

10

Simple Class Inheritance Constructor Parametric 
Constructor 

Line of Code (LOC)

LOC

 
Figure 2(e): Lines of Code versus OO Techniques 

0.5
0.52
0.54
0.56
0.58

0.6
0.62
0.64
0.66
0.68

Simple Class Inheritance Constructor Parametric 
Constructor 

Program Difficulty (D)

D

 
Figure 2(f): Lines of Code versus OO Techniques 

 

By using the graphical analysis of various metrics one can conclude that mathematical 

relationship and nature of curve formed by above said metrics when compared with different 

object oriented technologies like class, inheritance, constructor and parametric constructor. 



International Journal of Advancements in Technology   http://ijict.org/    ISSN 0976-4860 

 
 

Vol. 3 No.1 (January 2012)©IJoAT  32 

 

0

5

10

15

20

25

30

35

40

V(G) V’(G) D E V LOC

Simple Class

Inheritance

Constructor

Parametric Constructor 

   Figure 2(g): Variable Halstead size metrics versus OO Techniques 

The analysis is shown in the form of table 4 and figure 3 as shown below:  
 

Table 4: Mathematical Equation versus Metrics  

 

 

 

 

 

 

 

 

 

 

4. Conclusions 

In object oriented analysis we came to conclusion that constructor is the best choice 

among the above said technique due to its low ACLOC, AMLOC, LOC and higher value of 

SEIMI. In method comparison it is concluded that all the above said techniques like simple class, 

inheritance, constructor and parametric constructor has same value for cyclometic complexity, on 

the other hand constructor has low value of extended cyclometic complexity as compare to 

simple class and inheritance.  In regard to Halstead program difficulty it is found that inheritance 

has lowest value of difficulty and simple class has maximum value of program difficulty. In 

regard to program effort it is found the constructor is the best choice among above said 

techniques. Further constructor also minimizes the line of code (LOC). We have also concluded 

the different polynomial or logarithmic equation for different object oriented metrics under study.  

 

Metric Curve Equation 

V(G) Logarithmic Y=1 

V’(G) Logarithmic y = -0.82ln(x) + 4.156  

E Logarithmic y = -4.32ln(x) + 20.22  

V Polynomial y = -2.497x + 34.5  

LOC Polynomial y = -0.5x + 9  

D Polynomial y = -0.026x + 0.665  



International Journal of Advancements in Technology   http://ijict.org/    ISSN 0976-4860 

 
 

Vol. 3 No.1 (January 2012)©IJoAT  33 

 

0

5

10

15

20

25

30

35

40

45

Simple Class Inheritance Constructor Parametric 
Constructor 

V(G)

V’(G) 

D

E

V

LOC

Figure 3: Analysis of Complexity Metrics with different OO Techniques 

Acknowledgments 

Authors are highly thankful to Dr. Gurvinder Singh, Associate Professor, Department of 

Computer Science and Engineering, Guru Nanak Dev University, Amritsar, India for his precious 

guidance from time to time.  

References 

[1] H F Li, W K Cheung “An Empirical Study of Software Metrics” Software Engineering IEEE Transactions 

on (1987) Volume: SE-13, Issue: 6, Pages: 697-708 

[2] N E Fenton “Software Metrics” Conference Proceedings of on the future of Software engineering ICSE 

00(2000) Volume: 8, Issue: 2, Publisher: ACM Press 

[3] Kuljit Kaur Chahal, Hardeep Singh “Metrics to study symptoms of bad software designs” ACM SIGSOFT 

Software Engineering Notes (2009) Volume: 34, Issue: 1, Pages: 1 

[4] 12 Steps to Useful Software Metrics by Linda Westfall, [online] 

www.westfallteam.com/Papers/12_steps_paper.pdf 

[5] Manik Sharma , Gurdev Singh “Static and Dynamic metrics- A Comparative Analysis”, Emerging Trends in 

Computing and Information Technology 2011.  

[6] Tu Honglei , Sun wei, Zhang Yanan, “The Research of Software metric and software complexity metrics”  

International Forum on Computer Science Technology and Applications(2009) 

Publisher: IEEE, Pages: 131-136 

[7] Roger S. Pressman “Software Engineering-A Practitioner’s Approach” 6th Edition, McGraw Hill 

International Edition pp 466-472 

[8] Li, H.F., Cheung, W.K. “An Experimental investigation of software metric and their relationship to 

software development effort”, IEEE Transaction on software engineering 649-653, Piscataway, NJ, USA. 

[9] Thomas J McCabe, “A Complexity Measure”, IEEE Transaction on Software Engineering, Vol. SE-2 No. 4 

[308-320] 

[10] Manik Sharma, Dr. Gurdev Singh, “Analysis of static and Dynamic Metrics for Productivity and Time 

Complexity”, IJCA, Volume 30– No.1, September 2011. 

[11]  Satwinder Singh, K.S. Kahlon, “Static Analysis to Model & Measure OO Paradigms”, SAC, ACM. 

[12] F.B. Abrew, R. Carapuca, “Candidate metrics for object oriented software within a taxonomy framework”, 

Journal of Systems and Software, 26(1). 

[13]  M. Halstead, “Elements of Software Science”, Elsevier North-Holland, New York 1977 



International Journal of Advancements in Technology   http://ijict.org/    ISSN 0976-4860 

 
 

Vol. 3 No.1 (January 2012)©IJoAT  34 

 

[14] S.R Chidamber and C.F. Kemerer, “A Metrics Suite for Object Oriented Design”, IEEE Transactions on 

Software Engineering, Vol. 20 No. 6 

[15] KP Srinavan, Dr. T Devi, “Design and Development of procedure for new object oriented design metrics’, 

IJCA, Vol. 24, No. 8, Jun 2011 

[16] Rajib Mall, “Fundamentals of Software Engineering”, 3
rd

 Edition, PHI, pp 78. 

 


