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Abstract
Background: Finding accurate genome structural variations (SVs) is important for understanding phenotype 

diversity and complex diseases. Limited research using classification to find SVs from next-generation sequencing 
is available. Additionally, the existing algorithms are mainly dependent on an analysis of the alignment signatures of 
paired-end reads for the prediction of different types of variations. Here, the candidate SV regions and their features 
are computed using single reads only. Classification is used to predict the variation types of these regions.

Results: Our approach utilizes reads with multi-part alignments to define a possible set of SV regions. To 
annotate these regions, we extract novel features based on the reads at the breakpoints. We then build three random 
forest classifiers to identify regions with deletions, inversions, or tandem duplications.

Conclusions: This paper proposes a random forest-based classification approach, MPRClassify, which 
addresses the issue of finding SVs using single reads only. These single-reads are used to define candidate regions 
and extract their features. Experimental results show that single reads are sufficient to find SVs without the need 
for paired-end read signatures. Our proposed approach outperforms existing approaches and serves as a basis for 
future studies finding SVs using single reads.

Keywords: Structural variation; Next generation sequencing; Split 
read; Single read; Random forests; Supervised learning

Introduction
A genomic structural variation (SV) is defined as a rearrangement 

of a genome region at least 50 base pairs (bps) long [1]. There are 
several forms of SVs, including insertion, deletion, inversion, copy 
number variation (CNV), and translocation. SVs have a huge impact 
on the phenotype and genotype of complex diseases such as Mendelian 
and cancers [2-4]. Thus, much effort has been put into finding these 
variations from next-generation sequencing (NGS) datasets. However, 
finding genome structural variations in whole genome sequencing 
(WGS) is a difficult task, and solutions are still in the early stages. 
Various methods have been developed to find structural variations 
from WGS data generated by NGS platforms such as Illumina and 
Ion Torrent. These datasets are known as paired-end reads; a paired-
end read refers to two short sequences that are generated from DNA 
fragment ends. A typical approach to SV identification begins with 
aligning paired-end reads to a reference sequence. The read alignment 
signals are then analyzed to predict SVs. Alkan et al. divided these 
signals into four classes: read-pair (RP), split-read (SR), read-depth 
(RD), and assembly-based (AS) [1]. RP-based algorithms analyze 
abnormal paired-end read alignments that are not mapped as expected 
in terms of distance, orientation, or order of read-ends [5-8]. SR-based 
methods are used to find the best partial alignment for unmapped reads 
in detecting sequences of SV breakpoints at single-nucleotide precision 
[9]. RD-based approaches analyze read count changes between genome 
regions to find copy number variations [10-12]. AS-based approaches 
either use assembly graphs to call SVs [13] or refine SV breakpoints 
as a post-processing stage for other approaches [14]. In fact, no single 
signal can find all SV types and sizes with accurate breakpoints. 
Thus, recent studies combine two or more signals [15]. Because of 
the great contribution of SR-based approaches in finding accurate 
SV breakpoints, several approaches utilize SR with other signals. In 
Delly [16] and Prism [17], RP signals are used to predict the types and 
regions of SVs. Subsequently, unmapped read-ends are divided into 
splits and realigned to the putative breakpoint regions. Delly and Prism 
differ in their search spaces for breakpoints. Additionally, read aligners 

have improved to support partial alignment for reads that are difficult 
to align completely. In the literature, these reads are known as soft-
clipped reads (SCR). BWA-MEM [18] and Bowtie2 [19] are examples 
of such aligners. Accordingly, many SV calling algorithms use RP and 
SCR analysis. Usually, RP signals are used to predict candidate SV 
regions and their types, followed by an SCR analysis for refining. For 
example, CREST [20] assembles the SCRs at a breakpoint and maps the 
longer sequence into the reference genome to find other breakpoints. 
In Softsv [21], SCRs inside potential SV regions are aligned to each 
other to find precise breakpoints. Conversely, Softsearch [22] uses 
SCRs for breakpoint prediction of potential SVs first, then searches for 
the RP signals around the breakpoints for predicting variation type. 
Manta [23] incorporates RP signals, SCR signals, and AS into two 
scoring models for germline and somatic variations. Svelter [24] uses 
RP signals and SCR to generate potential breakpoints that are clustered 
according to their positions. Then, the breakpoints of two adjacent 
clusters are rearranged and scored based on the insert size, orientation, 
and read depth for each rearranged structure. Limited research has 
been conducted investigating the use of supervised learning techniques 
for finding SVs. Both SVM2 [25] and ForestSV [26] compute their 
features based on RP and RD signals. While SVM2 uses a multi-class 
SVM with polynomial kernel for classifying insertion and deletion 
regions, random forests are used in ForestSV to find duplications 
and deletions. Neither SVM2 nor ForestSV were designed to predict 
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accurate breakpoints. Alternatively, Wham [27] uses RP, SR, and SCR 
signals to predict initial SVs regions, which are then classified by a 
random forest classifier. Svclassify [28] uses one-class support vector 
machines to classify SV regions and non-SV regions using features 
derived from multiple sequencing technologies. Classification-based 
approaches use different techniques to extract and annotate candidate 
SV regions. Moreover, the training samples for them are different due 
to the lake of a real benchmark data for SVs identification problem. 
Existing methods mainly use information extracted from RP signals in 
order to predict SVs. RP information includes: distance between read-
ends, strands of read-ends, and order of read-ends. In this study, we 
investigate the use of single-reads information only without requiring 
RP information for predicting SVs. This is achieved by developing a 
multi-part read alignment classifier (MPRClassify) to find deletions, 
inversions, and tandem duplications. MPRClassify uses clipped reads 
to define potential SV regions. The regions are annotated with 61 
features based on clipped reads, RD, and rearrangement of breakpoint 
regions. We trained three independent random forests (RF) [29] 
using simulated training sets. The classification models are applied to 
simulated and real datasets and MPRClassify performance is compared 
to five state-of-the-art approaches.

Materials and Methods
Given a set of read alignments as a BAM file format [30] and a 

reference genome sequence to which the reads are aligned, MPRClassify 
computes the genome’s mean coverage and extracts the clipped reads, 
defines the set of potential SV regions (PSV), extracts features for 
these regions, and builds three random forest models to identify the 
regions of deletions, inversions, and duplications. The main workflow 
of MPRClassify is shown in Figure 1. MPRClassify assumes that read 
alignments are generated by a read aligner that supports multi-part 
alignment for reads that cannot be aligned completely to the reference 
sequence.

Extracting clipped reads

In this stage, the BAM file containing the alignments is parsed to 
extract clipped reads (CRs). A CR is a read-end that has been aligned 
to a reference sequence with a clipped portion from at least one of its 

ends because of sequencing errors or crossing SV breakpoints. Figure 
2A-C shows the clipped reads at breakpoints of deletion, inversion, and 
tandem duplication. According to the SAM/BAM specification [31], 
clipped reads are recorded either as soft-clipping or hard-clipping. 
In soft-clipping, the complete read sequence is kept, while only the 
mapped portion is kept in the case of hard-clipping. Most read aligners 
mark the top hit alignment of the read parts as soft-clipped and the 
alignments of other parts as hard-clipped. In our approach, we use the 
BWA-MEM [18] aligner to align the reads to the reference sequence. 
It supports the multi-part read alignment, and we recommend using 
it with MPRClassify. MPRClassify assumes that each clipped-read 
creates a potential SV's breakpoint at the position where the read has 
been clipped (br1 and br2 in Figure 2). A clipped-read CR is defined 
as a 9-tuple including: read name/ID, reference name where the read 
was aligned, breakpoint position on the reference sequence, alignment 
strand, length of the clipped portion, mapping quality of alignment, 
coverage of left region of the breakpoint (L in Figure 2D), coverage 
of right region of the breakpoint (R in Figure 2D), and read sequence. 
The length of the left (L) and right (R) regions is given as a threshold 
(covRegLen); we use 100 bps, as shown in Figure 2D. Region coverage 
is the average number of times the region has been mapped by reads. 
The read alignments used for computing coverage should be more than 
minimum mapping quality (minMapq); MPRClassify uses 30 as the 
default value. MPRClassify ignores the clipped reads that have a clipped 
portion smaller than the minimum clipped sequence length (clipLen); 
10 bps is used as a default value for clipLen. Moreover, MPRClassify 
only considers read alignments that are not flagged as duplicate PCR 
and pass quality control. The final outputs of this stage are two sets of 
soft-clipped reads only (SCR) and hard-clipped reads only (HCR).

Generation of potential SV regions

In this step, potential SV regions (PSV) are defined by pairing SCR 
breakpoints and HCR breakpoints. The clipped-pair scri ∈ SCR and hcrj 
∈ HCR forms a potential SV region psvk ∈ PSV if and only if scri and hcrj 
are parts of the same read and are aligned to the same reference. To find 
deletions, inversions, and duplications, clipped-pairs with different 
references are ignored. The clipped-read with the lower breakpoint 
position represents the left-read (LR) that creates br1 and the right-

Figure 1: MPRClassify workflow. The potential SVs regions are extracted. The random forests (RF) models are built by using simulated SVs regions (orange 
path). The models are used for predicting SVs from new samples (blue path).
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read (RR) that creates br2. Therefore, each psvk ∈ PSV is defined as a 
15-tuple of: reference name/ID, position of the LR (br1), position of 
the RR (br2), strand of LR, strand of RR, coverage of L region at br1, 
coverage of R region at br1, coverage of L region at br2, coverage of 
R region at br2, the soft clipped-read location (at br1 or br2), the side 
of the clipped part of LR (left or right), the side of the clipped part 
of RR (left or right), deletion-score, duplication-score, and inversion-
score. The last three scores are the pairwise sequence alignment scores 
of the sequence alignment of scri to the rearranged breakpoints regions 
generated by respectively applying deletion, duplication, and inversion. 
The pairwise sequence alignment score is the largest score of the best 
matches between two sequences. Alignment score calculation depends 
on the alignment type (local, global, or hybrid), substitution scoring 
schema, and gap penalties. MPRClassify uses the local alignment 
algorithm (Smith-Waterman) [32] to align reads to the rearranged 
regions. The scores are then divided by the length of scri sequence. 
MPRClassify ignores the PSV regions, which are less than 50 bps or 
overlap gap regions. The final PSV are passed to the next stage for 
computing classification features.

Feature extraction

Given a PSV set from the previous step, MPRClassify defines 61 
new binary features (0 or 1) for each psvk ∈ PSV as follows.

• Features 1–28 are for coverages around breakpoints (L and R 
regions). The coverage values are converted from numbers into 
nominals. Each coverage value is represented by seven nominal 
values.

• Features 29–44 are for the differences of coverages at 
breakpoints (between L and R regions at both br1 and br2). 
Each value is converted into eight nominal values.

• Features 45–47 are for the number of other entries in PSV 
sharing both br1 and br2, sharing at least br1, and sharing 
at least br2. These values should exceed a defined threshold 
(supportThr). MPRClassify uses half of the genome's mean 
coverage as a default for this threshold.

• Features 48–51 are for the strands of the read parts that form 
the PSV entries. The first feature represents whether the read 
parts are aligned in the same strand. The other features are for 
the other entries in PSV with parts mapped on different strands 
and sharing both br1 and br2, sharing at least br1, and sharing 
at least br2. As in features 45–47, these values should exceed 
supportThr.

• Features 52–57 are extracted from the alignment scores. The 
first three features represent whether the alignment scores 
exceed a defined threshold (alignThr). The last three features 
encode the largest score.

• Features 58–61 are for encoding the order of read’s parts that 
form a PSV entry.

• Feature 62 is the class of structural variation of the region. For 
deletion classifier, the value of this attribute is either deletion 
or not-deletion. The same way is used for labeling examples for 
inversion and duplication classifiers.

To remove highly correlated features, the Phi-coefficient is used 
to measure associations between attributes. The Phi-coefficient was 
introduced by Karl Pearson to measure correlations between binary 
variables [33]. If the absolute correlation between two attributes is above 
a threshold, the attribute with the largest mean absolute correlation is 
removed. All filtered features are recorded in an ordered vector and 
used as a feature set for building and testing random forest classifiers.

Random forests

Random forest was introduced by Breiman for classification and 
regression [29]. It is an ensemble of classification trees [34] in which 
each tree is built using a bootstrap sample of the training samples and a 
random selection of features at each split. For classification, predictions 
are made by a majority vote of the trees while averaging their outputs 
in regression. In our context, a random forest model is trained to 
predict structural variation type (feature 62). By using the feature set 
from the previous stage, binary random forest classifiers are trained 
using simulated training examples. Random forest models are trained 

Figure 2: An illustration for the single reads that are aligned at breakpoints of deletions (a), inversions (b), and tandem duplications (c). Red is used for the reads 
that are aligned to the forward strand and the blue color for reads aligned to the other strand. LRs and RRs are the reads clipped at the start and end regions of 
SV. In (d) we illustrate the regions (L and R) that are used for computing coverages around breakpoints.
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for binary classification for deletions, inversions, and duplications. To 
find the optimal classifiers, the classifiers are trained using different 
configurations of the number of trees (1, 100, 200, 300, 400, 500, 
600, 700, 800, 900, 1000) and the number of variables at each split 
(4–20). Accordingly, we train 187 models for each SV class (deletions, 
inversions, and duplications).

Results
Training dataset

Simulated datasets are used to train three classifiers for the three SV 
types: deletion, inversion, and tandem duplication. To generate training 
examples, a set of 1000 deletions, 1000 inversions, 500 insertions, and 
1000 tandem duplications was introduced in a copy of the human 
reference genome hg19 using RSVsim [35]. RSVsim is a simulator that 
simulates SVs of different types and sizes. Subsequently, paired-end 
reads are generated from the rearranged genome by wgsim [36]. We set 
the wgsim parameters (insert size, standard deviation read length, and 
base error rate) to 250, 75, 100, and 0.001. The reads are then aligned 
in the reference genome by BWA-MEM. The median coverage of the 
genome is 5x. Finally, the PSV regions and their features are computed 
as described in the Methods section. The default values are used for the 
thresholds. To train the models, the PSV regions are labeled first. The 
class of a psvk is set to deletion only if psvk has a reciprocal overlapping 
with a deleted region in the ground truth with a breakpoint divergence 
between 0−50 bps from the actual breakpoints. Inversion and tandem 
duplication regions are labeled similarly. The PSV contains 10,060 
regions (942 deletions, 6112 duplications, 1963 inversions, and 1043 
others). We use 0.75 for filtering attributes, as the threshold and feature 
set are reduced to 40 features.

Testing dataset

We simulated 15 whole genomes with the same variations using 
different combinations of read lengths and read depths. As in the 
training sample, we use RSVsim to generate variations in chromosomes 
1–22 of the human reference genome hg19. The number of variations 
is 1500 for each SV class (deletion, inversion, and tandem duplication). 
wgsim and BWA-MEM are used to generate testing BAM samples. The 
insert size of the reads is 500 for all samples. The read lengths are 75, 
100, and 150, and the read coverages are 5x, 10x, 15x, 20x, and 25x. In 
addition to the simulated dataset, we applied MPRClassify to the whole 
genome of the real sample NA12878. We chose this sample because it 
has high-quality benchmark SV calls [28]. The ground truth contains 
2,593 deletions in chromosomes 1–22. We only consider deletions of 
at least 50 bps. The minimum and maximum SV length in the ground 
truth are 50 bps and 139,620 bps, respectively. Small deletions (50–500 
bps) are the dominant group in the ground truth (about 70%). The 
NA12878 alignments are obtained from the 1000 Genomes Project 
[37], a low-coverage sample (about 5x coverage mean) with an average 
read-length of 101 bps. The alignments were generated by BWA-MEM 
aligner and in CRAM format. Subsequently, it was converted to BAM 
format to be processed by MPRClassify and other SV calling tools. 
SAMtools [30] is used for format conversion. The reference sequence 
for the sample is GRCh38. Because of the difference between the 
reference genome of the alignments (GRCh38) and the ground truth 
(hg19), the coordinates of the ground truth were converted to GRCh38 
using the UCSC batch coordinate conversion (liftover) [38].

Performance evaluation

We evaluate MPRClassify’s performance using the simulated and 

real datasets. We use sensitivity, precision, specificity, and F-score as 
defined in equations 1–3.

TPSensitivity
TP+FN

=                    (1)

TPPrecision
TP+FP

=                         (2)

Sensitivity PrecisionF-score 2.
Sensitivity+Precision

×
=                  (3)

Where TP is the number of correctly identified SVs, FP is the 
number of non-SVs that were incorrectly identified, and FN is the 
number of SVs that were incorrectly rejected. In this work, a prediction 
is assumed as a positive if it overlaps an SV in the ground truth of the 
same type and the divergence breakpoint distance is up to 50 bps. 
MPRClassify is benchmarked in both simulated and real datasets. The 
sensitivity, precision, and F1-score are used to compare MPRClassify 
with five state-of-the-art SV identification tools, namely Delly (version 
0.7.6) [16], Softsv (version 1.4.2) [21], Manta (version 1.4.0) [23], 
Svelter [24], and Wham [27]. Only Wham use a classifier for predicting 
SV classes. Although SVM2 [25] and ForestSV [26] are classification-
based approaches, we exclude them from the comparison because they 
do not utilize clipped-reads/split-reads in determining breakpoints 
of SVs. Their predictions are not accurate at lower base level. In our 
comparison, we are interested in evaluating prediction at lower base level 
resolution. The proposed solution and all approaches that are included 
in the comparison are either using SCR, SR, or both to find precise 
location of SVs. The default settings are used for running MPRClassify, 
Delly, Softsv, Manta, Svelter, and Wham across the simulated dataset. 
Figure 3 shows the overall MPRClassify performance in terms of F-score 
using models with different combinations of the number of trees and 
number of variables at each split. The best performance is achieved at 
400 trees and four variables for deletions, one tree and 14 variables 
for inversions, and 300 trees and four variables for duplications. The 
performance of individual genomes can be seen in the supplementary 
file. Table 1 and Figure 4 present the performance comparison of 
MPRClassify against state-of-the-art approaches on simulated datasets. 
For finding deletions, MPRClassify’s performance is comparable to 
Delly, Softsv, and Manta; however, MPRClassify achieves the highest 
precision (99%). Given the low coverage genomes (<15x) with read 
length (≥ 100 bps), MPRClassify is the best choice for finding accurate 
deletions. To find tandem duplication, MPRClassify scores the highest 
performance (97% F-score and 99% precision). For finding inversions, 
the results show that Softsv is better than the rest of the algorithms. 
MPRClassify has comparable performance to Delly and Manta and 
outperforms Svelter and Wham. To benchmark MPRClassify on the 
real sample NA12878, the comparison is performed for deletions only 
due to the lack of accurate SV calls for other SV types. MPRClassify, 
Delly, Softsv, Manta, and Wham were run in their default modes. To 
run Svelter, the parameter null-copyneutral-perc was set to 0.5, as 
recommended by Svelter’s authors, for use with low coverage genomes 
less than 10x. We assume that an SV prediction is a true positive if it 
overlaps with a ground truth region and if the breakpoint divergence 
distances of the actual breakpoints are within 50 bps. Table 2 shows 
that MPRClassify outperforms the other approaches in terms of overall 
performance (51% F-score) and precision (82%). Delly has the highest 
sensitivity (49%). Considering SCR-based approaches, MPRClassify 
has the highest sensitivity compared to Softsv, Manta, Svelter, and 
Wham. The results also indicate that Delly and our approach are more 
sensitive when finding small deletions (50–500 bps) and unique true 
positives over other approaches (Figures 5 and 6). In order to evaluate 
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the performance of MPRClassify in detecting deletions in repeat regions 
vs. non-repeat regions, we split the ground truth regions according to 
whether they include overlapping repeats or not. The repeat regions 
in the reference genome GRCh38 are obtained from the UCSC’s table 
browser. These regions were generated by RepeatMasker [39]; a tool for 
finding repeats in DNA sequences.  Accordingly, there are 1392 (about 
54%) regions with overlapping repeats and 1201 (about 46%) regions 
without overlapping repeats. Table 3 shows the performance of the 
compared algorithms in both these regions.

Discussion
Most existing approaches for finding SVs are based on RP signals 

for predicting SVs types. Our study aims to use single reads only to 
find SVs without using RP signals. MPRClassify uses multi-parts read 
alignments generated by an NGS read-aligner to form a set of possible 
SV regions. We introduce a new method for annotating these regions. 
Instead of using an RP signals, MPRClassify uses supervised learning 
to build three random forest models to classify candidate regions into 
deletions, inversions, and duplications. The models are trained by a 

simulated dataset with different combinations of the number of trees 
and number of nodes at each split. Overall, the proposed approach 
shows high performance with simulated and real datasets. The 
average F1-scores are approximately 92%, 97%, and 93% for deletion, 
duplication, and inversion, respectively. Despite the high precision of 
MPRClassify, the sensitivity is affected by how candidate SV regions 
are generated. For deletions, the results of the simulated data indicate 
that Delly, Softsv, and Manta have higher sensitivity than our approach 
due to the use of RP signals as a guide for defining breakpoints. While 
Manta demonstrates the highest performance on the simulated dataset, 
the results on the real sample (NA12878) do not show the same 
performance. MPRClassify has the highest F1-score and precision, 
while Delly has the highest sensitivity (Table 2). Delly’s high sensitivity 
can be attributed to its method of defining candidate SV regions. Delly 
realigns both unmapped reads and clipped-reads to refine breakpoints, 
which increases the number of candidate SVs. However, it is known 
that approaches which split and realign reads are more sensitive 

Figure 3: Performance of MPRClassify on simulated dataset using models with different combinations of number of trees and number of variables at each split. 
(A) Deletion; (B) Inversion; (C) Tandem duplication.

Deletion Inversion Tandem duplication
Algorithm Sensitivity Precision F-score Sensitivity Precision F-score Sensitivity Precision F-score

MPRClassify 0.855 0.990 0.917 0.937 0.917 0.927 0.940 0.991 0.965
Delly 0.927 0.947 0.937 0.952 0.902 0.927 0.902 0.987 0.943

Softsv 0.914 0.933 0.924 0.977 0.971 0.974 0.995 0.934 0.963
Manta 0.908 0.979 0.942 0.964 0.948 0.956 0.305 0.990 0.467
Svelter 0.792 0.835 0.813 0.700 0.968 0.813 0.101 0.030 0.047
Wham 0.521 0.729 0.608 0.779 0.569 0.657 0.846 0.440 0.578

Table 1: Sensitivity, precision, and F1-score across the testing simulated genomes.

Algorithm #TP #FN #FP Sensitivity Precision F1-score
MPRClassify 969 1624 214 0.374 0.819 0.513

Delly 1258 1335 5353 0.485 0.190 0.273
Softsv 886 1707 911 0.342 0.493 0.404
Manta 731 1862 194 0.282 0.790 0.416
Svelter 875 1718 3050 0.337 0.223 0.268
Wham 94 2499 139 0.036 0.403 0.067

Table 2: Comparison of NA12878 deletions (at least 50 bps size).

Algorithm Regions containing repeats 
1392

Regions without repeats 
1201

MPRClassify 583 (41.88%) 386 (32.14%)

Delly 740 (53.16%) 518 (43.13%)

Softsv 525 (37.72%) 361 (30.06%)

Manta 449 (32.26%) 282 (23.48%)

Svelter 515 (37.00%) 360 (29.98%)

Wham 56 (4.02%) 38 (3.16%)

Table 3: True predictions in regions containing repeats and regions without repeats 
in the sample NA12878.
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Figure 4: F1-score of MPRClassify and state-of-the-art approaches across testing genomes for deletions (A), inversions (B), and tandem duplications (D).

Figure 5: The pie chart shows the percentage the ground truth (deletions) for NA12878 sample over five size intervals. The bar chart shows the percentage of TP 
across the five size intervals for NA12878 sample.
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than SCR-based approaches that use clipped-reads generated by the 
aligners [15]. Wham has the lowest performance for finding NA12878 
deletions (Table 2) as a consequence of the low-coverage sequencing 
of the NA12878 sample (5x average mean coverage). This is confirmed 
with the results on simulated data (Figure 4). Both our approach and 
Wham use random forest in classifying candidate regions. However, 
the results on simulated and real samples confirm that our approach 
is more robust than Wham (Tables 1-3 and Figure 4). The results 
on simulated and real datasets confirm that the proposed approach 
achieves the best performance for finding duplications and deletions 
in low-coverage genomes with at least 100 bps read length (Figure 4). 
Our experiments show that single-reads information can be used to 
predict variation type without using RP information. Our approach 
achieves the best performance in detecting deletions from low coverage 
genomes. MPRClassify has three main stages: forming potential SV 
regions, extracting features of these regions, and applying classifiers 
for predicting SV class. Therefore, the sensitivity of MPRClassify 
depends on the sensitivity of generating candidate SVs as well as the 
classification sensitivity. Generating candidate SV for the NA12878 
dataset results in 59% sensitivity, which is higher than Delly (48%). 
After applying our classifier, the sensitivity is further reduced to 37%. 
The availability of a real benchmark data for training, would replace the 
use of simulated dataset and should improve the accuracy of finding 
SVs using real samples.

Conclusions
In this paper, we introduce MPRClassify, a new approach to finding 

accurate structural variations from whole-genome sequencing datasets. 
MPRClassify is based on multi-part read alignments for forming 
a possible SV set. It is intended to be used for single reads, so it can 
handle any type of NGS dataset (single or paired-end reads). We define 
a new method of annotating the candidate regions using clipped-reads, 
local depth, and rearrangement of breakpoints. For classifying regions, 
three random forest classifiers are trained by simulated data examples 
for identifying deletions, inversions, and tandem duplications. Real 
data experiments and simulations demonstrate that single reads 

could be used to find SVs without the need for RP signals. We show 
experimentally that MPRClassify achieves a better performance than 
state-of-the-art methods for finding deletions in simulated and real 
samples of low-coverage sequencing. 
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