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Abstract
Array Comparative Genomic Hybridization (CGH) has been widely used for detecting genomic copy number 

variations (CNVs). The central goal of array CGH data analysis is to accurately detect homogeneous regions of 
log intensity ratios which represent relative changes in DNA copy number. Various methods have been proposed 
in recent years. Most methods, however, do not consider correlations of neighboring probe measurements, and 
are usually designed for analysis at single sample level rather than detecting common or recurrent CNVs among 
multiple samples. We propose a Bayesian segment-based approach for efficient analysis of array CGH data. The 
proposed method is based on simple assumptions but is general enough to accommodate various spatial correlations 
among probe measurements. It also allows for multiple samples with recurrent CNVs, therefore is able to borrow 
strength across samples. In contrast to another probe-based approach developed in the same Bayesian framework, 
the segment-based approach parameterizes the mean log intensity ratios in a more appropriate way, which leads to 
a posterior sampling scheme based on reversible-jump Markov chain Monte Carlo. We perform a simulation study to 
compare these two approaches and the commonly-used circular binary segmentation method and Bayesian hidden 
Markov model method. The segment-based approach achieves better estimation accuracy and higher computational 
efficiency compared to the probe-based approach, and also provides improved results compared to the other two 
methods, especially for data with relatively low signal to noise ratio and high correlation. The segment-based approach 
is further applied to the Corriel cell lines data and Pancreatic Adenocarcinoma data.

Keywords: Copy number; Intensity ratios; MCMC; Reversible jump

Introduction
Array-based comparative genomic hybridization (CGH) is a high 

throughput technique that simultaneously measures relative changes 
in DNA copy number at thousands of genomic loci [1,2]. In array 
CGH experiments, test (tumor) and reference (normal) DNA samples 
are labeled by different fluorochrome and hybridized onto an array 
containing genomic clones. The resulting fluorescence intensity ratios 
are recorded according to the physical location of the corresponding 
probes on the genome, and further normalized and transformed to 
log2 scale to indicate genome-wide changes in copy number. The log 
intensity ratios therefore indicate distinct copy number states such 
as copy neutral, copy losses and copy gains. Ideally (without tissue 
contamination, measurement errors, etc.), in copy neutral regions, 
both test and reference DNA samples have two copies hence the log 
intensity ratio is log2(2/2) = 0. Similarly, in regions of single-copy loss, 
single-copy gain and double-copy gain, the corresponding log intensity 
ratios are log2(1/2) = -1, log2(3/2) = 0.58 and log2(4/2) = 1, respectively. 
In this study, we mainly consider these four copy number states. 
Multiple-copy (greater than 2) gains or amplifications can be included 
in the same manner if needed, and double-copy losses or deletions 
can be easily detected without using statistical techniques since their 
corresponding log intensity ratio is log2(0/2) = -∞. In practice, the 
log intensity ratios do not exactly follow the theoretical values due to 
various experimental and biological reasons. Also there is usually a 
non-negligible dependence among the log intensity ratios of adjacent 
probes. As an example, Figure 1 shows the normalized log intensity 
ratios for breast cancer specimen S0034 [1].

The purpose of array CGH data analysis is to identify homogeneous 
regions of high or low intensity ratios, i.e., copy number variations 
(CNVs) in the genome. From the statistical point of view, the 
analysis involves estimating two types of parameters: the location of 
homogeneous regions and the copy number states of these regions. 

There is an extensive literature on the analysis of array CGH data. For 
example, Hodgson et al. [3] applied a hybrid least-square and maximum 
likelihood method to fit a mixture Gaussian distribution to a histogram 
of log intensity ratios. Olshen et al. [4] and Venkatraman and Olshen 
[5] used circular binary segmentation (CBS) algorithms to divide the
genome into regions of equal copy number, based on a well-developed
change point detection theory using hypothesis testing [6]. Wang et al.
[7] and Picard et al. [8] adopted segmentation/clustering algorithms to 
select clusters with regions of genetic alterations. Smoothing techniques 
and Wavelet methods are proposed by Eilers and de Menezes [9] and
Hsu et al. [10]. There are also hidden Markov model (HMM) based
approaches which model the dependence across genome location
by transition between hidden states [11,12]. In addition, Bayesian
procedures have been studied for single and multiple change point
problems [13-18], and have been applied to CGH data analysis [19-
24]. In a recent work of Baladandayuthapani et al. [25], Bayesian
functional mixed models are proposed which treat the CGH arrays as
functions and accommodate subject-wise random effects. In general,
most available methods can be categorized into two groups: empirical
methods and model-based methods. When using empirical methods,
one usually performs data processing through two steps: smoothing
(or denoising) and thresholding. Though easy to implement, these
methods usually lack statistical power. On the other hand, when using
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model-based methods, one aims at fitting data with suitable statistical 
models and making inference on model parameters. These methods 
are able to provide statistical significance for determining CNVs, but 
they are usually complicated and computationally intensive compared 
to empirical methods. From the modeling perspective, many available 
methods are designed for single sample analysis. For recurrent CNV 
(i.e., multiple samples sharing the same CNV information), these 
methods cannot borrow strength across samples. Furthermore, most 
of them assume independence across probes, or independence across 
segments, without considering the spatial correlations across genomic 
locations.

In this paper, we propose a Bayesian segment-based approach 
for array CGH data analysis. This approach is based on simple 
assumptions and is computationally efficient. It is also general enough 
to accommodate both among-probe correlations and multiple samples 
with recurrent CNVs. Under the same model assumptions, there 
exists another probe-based approach in a similar Bayesian framework. 
The proposed segment-based approach differs from the probe-based 
approach in the parameterization of the mean log intensity ratios, 
which leads to a different posterior sampling scheme. We perform a 
simulation study to evaluate their performance under a range of signal 
to noise ratios (SNRs). Simulation results show that the segment-
based approach achieves better estimation accuracy and higher 
computational efficiency than the probe-based approach. We also 
compare the segment-based approach to the commonly-used CBS and 
Bayesian HMM methods using simulated data with low SNR and high 
correlation. The result shows that under certain circumstances when 
CBS and HMM may not work well, the segment-based approach still 

achieves relatively reasonable estimates of the CNVs. The segment-
based approach is further applied to the Corriel cell lines data and 
Pancreatic Adenocarcinoma data and shows good performance.

The rest of the paper is organized as follows. In Section 2 we 
introduce the basic framework, present details of the probe-based 
Bayesian approach and the segment-based Bayesian approach, and 
describe the corresponding MCMC algorithms. Section 3 shows the 
comparison results using simulated data. Section 4 demonstrates the 
success of the segment-based approach using publicly available Corriel 
cell lines data and Pancreatic Adenocarcinoma data. We conclude with 
a brief discussion in Section 5.

Methods
The basic framework

Suppose that the target DNA sequence has L probes. Let x = (x1,…
xL)

T be the normalized log intensity ratios. In our modeling scheme, 
we assume that x is a realization of a random vector X, which is of 
dimension L, with mean μ = (μ 1,… μ L)

T and covariance matrix Σ. Here 
μj is the mean log intensity ratio of probe j, 1≤ j ≤L and it takes value 
from a vector of theoretical levels {−1, 0, 0.58, 1}. Multiple-copy gains 
can be included in the vector of theoretical levels if needed. For a more 
general case where the theoretical levels are unknown, our Bayesian 
approach is still applicable with slight extension. More details are 
discussed in Section 5. The mean vector μ contains information of 
copy number variations in the DNA sequence and is assumed to be 
piecewise constant. The covariance matrix Σ indicates the correlation 
structure of the probe intensity ratios.
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Figure 1: An example of array CGH profile. Blue dots: normalized log intensityratios of breast cancer specimen S0034 [1]; Vertical black dashedlines: borders 
between chromosomes.
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We further make the assumption that X has a certain multivariate 
distribution. A variety of multivariate distributions can be used for 
the likelihood. In this study, we focus on the multivariate normal 
distributions for computational convenience. This gives the likelihood 

1
12 2 1( | , ) (2 ) | | exp ( ) ( ) .

2

L
Tf π

− − − Σ = Σ − − Σ − 
 

x x xµ µ µ

Note that this likelihood is only for a single sample x. If multiple 
independent samples x1,x2,…exist, the likelihood can be simply 
replaced by a product of likelihoods from each sample. The advantage 
of multiple sample analysis will be demonstrated through simulations 
later on in Section 3. The parametric forms of the covariance matrix 
Σ can also be varied depending on the biological information and the 
experimental condition. One choice we will adopt is the first-order 
autoregressive form with correlation ρ and marginal variance ^2, i.e., 
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is the inverse of the correlation matrix. For the auto-regressive 
correlation assumption, analytic form of its inverse and determinant 
exists, which significantly simplifies the computation of the likelihood.

Our goal is to accurately estimate the mean vector μ based on the 
observed sample(s), treating other parameters as nuisance. For this 
purpose, we adopt Bayesian method. Under the basic framework, 
different parameterizations of μ can be used when setting up the priors, 
which leads to different posterior sampling schemes. We introduce the 
following two approaches in detail.

Probe-based approach

In the probe-based approach, we assume a simple discrete prior 
distribution for each component of μ, with probability mass at the 
theoretical levels, i.e. the prior of the i-th component μi, 1≤ i ≤ L is

1 { 1} 2 { 0} 3 { 0.58} 4 { 1}( | ) 1 1 1 1 ,
i i i ii p p p pµ µ µ µπ µ =− = = == ⋅ + ⋅ + ⋅ + ⋅p

where 1{.} is an indicator function and p = (p1,…p4)
T. Letting μi be 

i.i.d a priori (note that this independence is only for priors), we can 
write the prior of μ as
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We assume an inverse Gamma prior for σ2, and a Beta prior for ρ 
(in most situations, we consider non-negative correlation only), i.e.,
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The σ2 and ρ are a priori mutually independent and independent of 
μ. Based on this set up, we can write the joint posterior as
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We further factorize the joint posterior as 
2 2( , , | ) ( , | ) ( | , , )π σ ρ π ρ π σ ρ= ⋅x x xµ µ µ .  It is easy to see that the conditional 

posterior of σ2 is again an inverse Gamma distribution:
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from the joint posterior, we get the marginalized joint posterior for (μ, ρ):
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Based on the above description of the joint and marginalized 
posterior distributions, we design a hybrid MCMC algorithm for 
posterior sampling. Detailed steps are described as follows: 

Step 1: Set initial values for μ, σ2 and ρ.

Step 2: Conditioning on the current value of ρ, update μi 

sequentially ( )( | , , ), 1, ,i i i Lπ µ ρ− =x µ  using Gibbs sampler, where 
μ(-i) is from the vector of μ with the ith component removed. Note that 
the conditional posterior of μi is discrete, taking values in {−1, 0, 0.58, 
1} and the probabilities can be computed based on (2). The order of 
updating μi can be randomized. 

Step 3: Conditioning on the current value of μ, update ρ from the 
conditional posterior  π(ρ|μ,x) using Metropolis-Hastings update. 
For the proposal distribution, we adopt a random walk proposal 
based on the logit transform of ρ, i.e., proposing a new value ρ from

2logit( ) | logit( ) ~ (logit( ), ),ρ ρ ρ ν N where ν is the step-size. 

Step 4: Conditioning on the current values of μ and ρ, sample σ2 
based on conditional posterior  π( σ2|μ,ρ,x) . 

Repeat 2∼4 until reaching the pre-specified maximum number of 
iterations. 

Through simulations (as seen in Section 3), we find that the 
probe-based approach usually produces spurious local spikes in the 
estimation of μ, especially in single-sample analysis. This is because it 
assumes a priori independence for μi at each probe and does not take 
into account homogeneous regions formed by the probes. One way 
of fixing this is to use the window-based approach, i.e., dividing the 
target sequence into small windows with fixed width, and updating μ 
window by window instead of probe by probe. Depending on whether 
the probes within each window are constrained to have the same mean 
log intensity ratio a priori, there are two different cases. If no a priori 
constraint is added, we simply update μi’s window-wisely rather than 
probe-wisely, which is equivalent to the probe-based approach but 
with higher efficiency in MCMC. If such a constraint “μi = μj, for i, j in 
the same window” is added a priori, then in the multivariate normal 
model, μ is parameterized as μ=(w1,…,wm)T where wj is a vector of 
repeated μj’s and m = ⌈L/window size⌉. This is equivalent to assuming 
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a fixed-window segmentation in the prior, or adding an additional 
dimension reduction step in modeling. The reduced dimension makes 
the MCMC more efficient, and removes some of the small spikes 
caused by singleton noise in the estimation. However, it also shrinks 
the support of the prior distribution because only those μ’s that satisfy 
such fixed-window segmentation constraint are allowed. Therefore it is 
crucial to choose appropriate window size, otherwise the MCMC will 
not converge to the true μ and will result in wrong estimates. From the 
above discussion, we see that the window-based approach has limited 
improvements, and it has difficulty to determine the correct window 
size. We therefore propose a new segment-based approach in Section 
2.3, which is shown to have better estimation accuracy and higher 
computational efficiency.

Segment-based approach

The probe-based approach assumes that the μi’s are a priori 
independent, which does not reflect regional features of CNVs. 
Therefore the posterior estimates can be sensitive to local aberrations 
(spurious spikes) unless there are multiple samples to borrow strength 
from. We now propose a segment-based approach which does take into 
account the regional features in the prior. The segment-based approach 
is based on a different parameterization of μ. We assume that the L 
probes form n segments (homogeneous regions). Here n is a hyper-
parameter in our Bayesian scheme. Note that some expressions such 
as priors and posteriors in this subsection are conditional on n, but, 
for convenience this condition may be omitted from notation in the 
following context. We assume that probes in each region share the 
same mean log intensity ratio, and two adjacent regions have different 
means. Denote the length of segment j by zj, with mean log intensity 

ratio mj,j = 1,…,n. We have zj ∈ , zj ≤ L – n + 1, 
1
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j j
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where m = (m1,m2,…,mn)
T, 1z is a vector consisting of sub-vectors of 

1’s with length zj,j = 1,…,n, and ⊗ is the operator of vector expansion. 
With this parameterization, we rewrite the likelihood as follows:
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For simplicity, we assume a discrete uniform prior for z. It is clear 
that to separate L probes into n segments subject to a condition that the 
length of each segment is a positive integer and all sum to L, there are 
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L
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We assume that each mj follows a discrete prior distribution 
supported at the four theoretical levels, i.e.,
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Note that the prior of z plays an important role in a MCMC 
sampler that involves dimension change. Improperly selected prior 
may increase computational complexity, or result in slow mixing 
of the Markov chain. For example, if we use a rescaled multinomial 
prior, i.e., 1

1
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nzz
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the computation will be difficult 

because the rescaling constant d needs to be computed for each 
configuration. Another example is the “length-proportional” prior: 

( ) .i
xz x
L

π = =  Although it seems reasonable, this prior causes difficulty 

when calculating π(z), because the zi’s are not independent a priori. In 
practice, we found the discrete uniform prior easy to use and have good 
performance.

The mj’s are not a priori independent due to the constraint that 
mj’s on the neighboring segments can not be equal. Therefore we 
cannot simply write the prior of m as the product of the priors of its 
components. Nevertheless, Markov property induced by the constraint 
mj ≠ mj+1, 1 ≤ j < n gives

1 2 1 1( | ) ( | ) ( | , ) ( | , ).n nm m m m mπ π π π −=m p p p p

Assuming independence of z and m, the prior of μ becomes

( | ) ( ) ( | ).π π π= ⋅p z m pµ

Other priors are set to be the same as in the probe-based approach. 
We may thereby write the joint posterior as
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Similarly as in the probe-based method, we can integrate out σ2 and 
obtain the marginalized joint posterior:
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In the segment-based approach, since the number of segments n, 
which determines the dimension of the parameter space, is not known 
a priori, we implement reversible jump in our MCMC. The algorithm 
is carefully designed following the reversible jump MCMC principles 
[26], therefore the ergodicity is guaranteed. Details of the algorithm is 
listed as follows: 

Step 1: Set initial values for z, m, ρ and σ2.

Step 2: Conditioning on the current value of ρ, update z and m 
from the conditional posterior either sequentially or simultaneously, 
depending on the type of move. There are three types of proposals 
corresponding to different cases of dimension change, each happening 
with a certain probability. The details are described further on. 

Step 3: Conditioning on the current values of z and m, update 
ρ using Metropolis-Hastings based on the conditional posterior 
π(ρ|z,m,x). 

Step 4: Conditioning on the current values of z, m and ρ, update σ2 
from inverse gamma distribution. 

Repeat 2∼4 until reaching the pre-specified maximum number of 
iterations. 

Denote the parameter subspace when n takes value k as k,nmin ≤ 
k ≤ nmax. In step 2, there are three types of proposals corresponding to 
the cases of “no change”, “increase” and “decrease” in dimensionality, 
described as follows: 

1.  k → k.  This update involves no dimension change. The update 
of z and m can be done sequentially.
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First, conditioning on current values of m and ρ, update z based on 
conditional posterior using Metropolis-Hastings. The candidate sample
z can be proposed in different ways, e.g., (1) independent proposal 
from e.g. a multinomial distribution, (2) discrete random walk on 

hyperplane
1

,
n

j
j

z L
=

=∑ as a simplified case we may randomly choose two 

segments zi, zj from z and let ( ) , (1 )( ) ,i i j j i jz u z z z u z z   = + = − +      where u is 
a unif(0,1) random variable. With independent proposal, the proposal 
ratios are easy to compute but it can cause low acceptance rate and the 
chain may mix slow. In our algorithm, we use the simplified discrete 
random walk proposal and choose zi, zj to be neighboring segments. 
We may also consider using non-symmetric random walk proposals, 
such as ( | ) ~ multinomial( , ).p L

L
zz z Using this type of proposal involves re-

evaluation of the proposal ratio in each step, and therefore introduces 
additional burden in computation.

Second, conditioning on current values of z and ρ, update m based 
on conditional posterior using Metropolis-Hastings. Similarly, there 
are also different ways, (1) independent sequential proposal where we 
may update the whole m vector in one Metropolis-Hastings step by 
proposing a new vector  independent of current values of m, under 
the constraint that mj ≠ mj+1,for all 1≤ j <n. (2) only update mi, mj 
corresponding to the zi, zj updated using the simplified discrete random 
walk. The proposal is a discrete uniform distribution whose support 
should satisfy the constraint jm that  does not equal to the neighbors 
mj-1, mj+1. In our algorithm, we use method (2) and let the proposal 
independent of current m. For example, if mj-1 = 0, mj = 1, mj+1 = −1, 
then 1jm = or 0.58 with probability 0.5. 

2.    k → k+1. This update is called “split”.

We first generate an auxiliary random variable ~ Beta( , )u uu a b , 
then randomly choose a segment, say zj, and split it into two segments:

, (1 ) .ja j jb jz uz z u z     = =  −  The split of mj into jam and jbm is subject to the 
constraint mj ≠ mj+1, 1 ≤ j < n. The proposed values of jam and jbm is 
independent of the splitting strategy of zj. But the update of zj and mj 
has to be performed simultaneously in one Metropolis-Hastings step. 

Denote the proposal ratio ( | , )
.

( , | )
j ja jb

ja jb j

p m m m
R

p m m m
=

 

 

The appropriate acceptance 

probability for split is obtained by min{1, A}, where

( ) ( ) 1

( ) ( ) 1

( , , , |, , , , ) ( 1) ( | ) ( , )
.

( , | , , , ) ( ) ( | ) ( ) ( , )
ja jb ja jb j j k k ja jb

j j j j k k j

z z m m x n p z z
A R

z m x n p q u z u
π ρ π

π ρ π
− − +

− − +

+ ∂
=

⋅ ∂

z m
z m

     
 

Remarks: (1) For the prior of hyperparameter n, we set
1( ) , [ , ].

1 min max
max min

n k k n n
n n

π = = ∈
− +

(2) The probabilities of choosing merge or split are set to be equal, 
i.e., 1 1( | ) ( | ) ,0 0.5k k k kp p q q+ += = ≤ ≤    for all k. Clearly, q = 0 corresponds to 
sampling within the current subspace and q = 0.5 corresponds to always 

switching. In practice we set q = 0.35. (3) We can see that ( , )
( , )

ja jb
j

j

z z
z

z u
∂

≈
∂

  . 

The proposal of m is again discrete uniformly distributed with support 
satisfying the constraint, by symmetry of the proposal distribution, R 
= 1. 

3.    k → k+1. This update is called “merge”. We randomly choose 
a neighboring pair of segments and merge them into one segment. The 
acceptance probability for merge is min{1, B} where B is simply the 

inverse of A. Note in this step, we shall set .ja

j

z
u

z
=


Simulation Study
An easy single-sample simulation example

Simulation of array CGH profile data is done by superimposing a 
sequence of Gaussian noise to a pre-specified piecewise constant log 
intensity ratio signal. We first consider an easy case with high SNR. We 
set the number of probes L = 100. The piecewise constant log intensity 
ratio signal consists of 3 aberrations with amplitude 1, 0.58 and −1, 
each with width 25 (wide), 15 (medium) and 5 (narrow) respectively. 
The Gaussian noise is multivariate normal with mean 0, standard 
deviation 0.18, correlation 0.3. Panel A of Figure 2 shows an example 
of the simulated data. The autocorrelation plot of the Gaussian noise 
is shown in panel B of Figure 2. In our Bayesian analysis, we set prior 
parameters a = 2.1, b = 0.02, α = 1.5 and β = 1.5, other parameters ν 
= 0.1 and q = 0.35. We set initial value ρ(0) = 0.5, and set the first 50 
probes of μ(0) with log intensity value −1 and the second 50 probes with 
log intensity value 0. The length of the Markov chain is 4×104. After 
discarding a burn-in period of length 3×104, we obtain estimates for 
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Figure 2: A: An easy example of simulated data. Black circles: observed log intensity ratios x; Blue solid line: true µ. B: Autocorrelation plot of x-µ.
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was done on a desktop computer with Intel Core2Duo E7500 CPU 
and 3G RAM. The main program to perform MCMC and estimation 
is coded in C and compiled into a dynamic library which can be called 
by R. The code is available upon request from the authors. The average 
computing time for simulating 105 posterior samples is also listed in 
the table. From the single-sample analysis result, we see that under all 
settings, the segment-based approach outperforms the probe-based 
approach in both estimation accuracy and computational efficiency. 
In particular, we notice that the segment-based approach runs much 
faster than the probe-based approach, though the latter uses a simpler 
MCMC algorithm. This is because in the segment-based approach, the 
dimension of the parameter space is in the order of n, and the update of 
z and m is through Metropolis-Hastings, which updates one segment 
per iteration; whereas in the probe-based approach, the dimension of 
the parameter space is L, and the update of μ is through Gibbs sampler, 
which updates L times sequentially in each iteration, moreover, the 
posterior distribution for each μi needs to be recomputed in each 
iteration. The latter certainly takes much longer time since the number 
of probes L is large and L >> n. In the simulation, the estimation 
accuracy turns out to be sensitive to the parameter σ2 as it controls the 
noise level. Large σ2 implies a low SNR, which leads to high noise data 
and makes the estimation difficult. The other parameter ρ affects the 
estimation accuracy differently for the two approaches. For the probe-
based approach, when noise level is high, many probes are misclassified, 
therefore the effect of correlation is dominated by the effect of low 
SNR and the MCR does not change much (0.6109 versus 0.6175); in 
the low noise case when most probes are classified correctly, as seen 
from the high TPR (>0.8), large ρ tends to magnify the effect of high 
SNR, hence it decreases the FPR (0.1115 versus 0.0402) and the MCR 
(0.1389 versus 0.0786). For the segment-based approach, regardless 
of the noise level, large ρ tends to form spurious segments which are 
possible to be incorrectly detected, hence it increases the FPR (0.0007 
versus 0.0285 for σ2 = 0.152, 0.0224 versus 0.0689 for σ2 = 0.32) and the 
MCR (0.0207 versus 0.0458 for σ2 = 0.152, 0.0602 versus 0.1357 for σ2 
= 0.32). We also include the double-sample analysis result in the table. 
Analysis of recurrent CNVs in multiple independent samples is done 
by simply replacing the likelihood (1) with a product of likelihoods 

μ, ρ and σ2 from their posterior samples. Figure 3 shows the estimated 
μ by using the probe-based and segment-based approaches. We see 
clearly that under this setting, the probe-based approach produced 
spurious spikes and misclassified a few probes, whereas the segment-
based approach obtained a perfect estimate. For better illustration, we 
also draw trace plots for the posterior samples of ρ and σ2 in Figure 
4. It is clearly seen that the segment-based approach achieves better 
estimations than the probe-based approach. In addition, panel E of 
Figure 4 gives the trace plot of posterior n samples in the segment-
based approach, which illustrates the changing of dimensionality of the 
parameter space. 

Comparison between probe-based and segment-based 
approaches under various settings

When comparing different array CGH analysis methods using 
simulation, one should be cautious not to simulate data in favor of certain 
model assumptions. Otherwise the conclusion may be misleading. Since 
our two approaches are based on the same multivariate normal model, 
it is possible for us to perform a comparison of their performance. 
In general, there are several criteria [27] to evaluate the goodness of 
estimation of the log intensity ratio μ. For instance, misclassification 
rate (MCR), defined as 1

L
⋅Number of non zero elements in ˆ ;−µ µ false 

positive rate (FPR), defined as misclassification rate in copy-neutral 
area; true positive rate (TPR), defined as 1 − (misclassification rate in 
aberration area); and mean squared error (MSE), defined as 2

2
1 ˆ|| ||−
L

µ µ . In real 
data analysis when the true log intensity ratio is unknown, 2

2
1 ˆ|| ||− x
L

µ

can be used instead.

Table 1 lists the performance of the two Bayesian approaches under 
different parameter settings. By repeating the above simulation 100 
times, we obtained the average MCR, FPR and TPR in small σ2 (0.152), 
large σ2 (0.32) and small ρ (0.1), large ρ (0.6) for both approaches in 
both single-sample and double-sample analysis. We set the length of 
the Markov chain to be 105 with a burn-in period 9×104. To reduce 
sample autocorrelations, a thinning process was done by keeping every 
10th simulated draw from the posterior samples. This simulation study 

A

0 20 40 60 80 100

−1
.0

−0
.5

0.
0

0.
5

1.
0

Probe ID

Lo
g 

In
te

ns
ity

 R
at

io

B

0 20 40 60 80 100

−1
.0

−0
.5

0.
0

0.
5

1.
0

Probe ID

Lo
g 

In
te

ns
ity

 R
at

io

Figure 3: Estimated µ for the simulated data example. Black circles: observed log intensity ratios x; Blue solid line: true µ; Red solid line: estimated µ. A: probe-based 
approach; B: segment-based approach.
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from each sample. From Table 1, we see that in double-sample analysis, 
the method gains more accurate estimates especially in the high noise case.

Comparison with CBS and HMM in single-sample analysis

To better illustrate the strength of the segment-based approach, we 
compare it to the commonly-used CBS and Bayesian HMM methods 
using a more complex (low SNR and high correlation) single-sample 
data from the simulation. It is of no doubt that the segment-based 
approach should perform better since the simulated data is in favor 
of our multivariate normal model assumptions, nevertheless, this 
comparison is useful because it shows that, under certain circumstances 
when CBS and HMM may not work well, the segment-based approach 
still achieves relatively reasonable estimates of the CNVs. Here we set 
L = 100 and 2 aberrations in the data: amplitude equals 1 with width 
25 and amplitude equals 0.58 with width 20. The Gaussian noise has 
standard deviation 0.5 and correlation 0.4. The length of the Markov 
chain is 5×104 with a burn-in period of length 4.5×104. The other 
settings are the same as in Section 3.1. Figure 5 panel A shows the 
simulated data with true mean log intensity ratios, panels B, C and D 
gives the estimation results by CBS, Bayesian HMM and the segment-
based approach, respectively. From panels B and D, we see that both 

CBS and the segment-based approach identify the first CNV correctly. 
However, due to the high noise level and strong correlation, CBS fails 
to detect the second CNV and produces a false positive estimation for 
the last three probes, whereas the segment-based approach is able to 
detect the starting change point of the second CNV though it also fails 
to detect the ending change point for the same reason. Bayesian HMM 
method, on the other hand, is shown to be too sensitive to the outliers 
under this setting, as seen from the false positive detections on state 
1 (amplitude equals −1), 3 (amplitude equals 0.58) and 4 (amplitude 
equals 1). We see that although HMM takes into account correlation, 
it seems not appropriate to analyze such data where correlation only 
exists in the superposing Gaussian noise.

The purpose of this comparison is not to show that the segment-
based approach is superior to the other two, but to illustrate that the 
segment-based approach may achieve reasonable estimates when 
other benchmark methods do not work, especially when the data 
satisfy the multivariate normal assumption and show low SNR and 
high correlation. We also see that the performance of a method may 
highly depend on the property of the data. A method may perform well 
for some datasets but fail for others, and there is no panacea in array 
CGH data analysis. Therefore, it is very important for researchers to 
investigate the data in detail before applying suitable methods.

Performance of the segment-based approach in the case of 
large L and n

We have shown through simulations that the segment-based 
approach is effective and efficient compared to the probe-based 
approach. In practice the analysis of array CGH data is often done on 
the chromosome level, involving several hundreds to thousands of 
probes. Therefore we need to consider the large L case. For example, in 
the Pancreatic Adenocarcinoma dataset which will be discussed later on 
in Section 4.2, chromosome 1, the longest one, contains 1,339 probes, 
and the average number of probes over all chromosomes is 517. Large L 
then leads to possible large n. Some methods may not be able to analyze 
such long DNA sequences or may suffer from heavy computational 
burden when L and/or n are large, due to their complex underlying 
model assumptions or implementing algorithms. For this reason, we 
design a single-sample simulation study to check the feasibility of our 
segment-based approach when L and n are relatively large.

We set the number of probes L = 800 and the number of segments 
n = 41. Starting from the second segment, every other segment is set 
to be an aberration with amplitude randomly selected from 1, 0.58 
and −1. The width of the even segments is drawn independently from 
discrete unif (5, 25), and for the odd segments, the width is drawn 
from a multinomial distribution with equal probabilities. All the other 
parameters are set to be the same as in Section 3.1, except that now the 
Markov chain is set to have 8×106 iterations with a burn-in period of 
length 7.9×106, and is further thinned in every 10 posterior samples. 
Initial values are set in the same manner, with the first half of the probes 
starting from log intensity value −1 and the second half starting from 0.

The simulation is repeated for 100 times. Figure 6 shows one of the 
simulated data and its estimated μ by using the segment-based approach. 
We see that in this particular simulation, the 11th (with 9 probes) and 
the 19th (with 13 probes) aberration segments were misclassified. For 
this simulation study, the segment-based approach gives an average 
MCR of 0.052, an average FPR of 0.0075 and an average TPR of 0.882. 
The average running time for total 8×106 iterations is 251 seconds.

It is clear that the computing time scale of the segment-based 

(1)For σ2 = 0. 15, ρ = 0.1
 

Average 
MCR

Average 
FPR

Average 
TYR

Running time 
(sec/105 iter)

probe-based Single-sample 
analysis 0.1389 0.1115 0.8276 33.65

  Double-sample 
analysis 0.1112 0.0967 0.8711 48.88

Segment-
based

Single-sample 
analysis 0.0207 0.0007 0.9549 0.97

  Double-sample 
analysis 0.0099 0 0.9780 1.20

 

(2)For σ2 = 0. 15, ρ = 0.6
 

Average 
MCR

Average 
FPR

Average 
TYR

Running time 
(sec/105 iter)

probe-based Single-sample 
analysis 0.0786 0.0402 0.8744 33.61

  Double-sample 
analysis 0.0850 0.0771 0.9053 48.64

segment-
based

Single-sample 
analysis 0.0458 0.0285 0.9331 0.97

  Double-sample 
analysis 0.0609 0.0545 0.9313 1.20

(3) For σ2 = 0. 32, ρ = 0.1
 

Average 
MCR

Average 
FPR

Average 
TYR

Running time 
(sec/105 iter)

probe-based Single-sample 
analysis 0.6109 0.6525 0.4400 35.20

  Double-sample 
analysis 0.1634 0.1169 0.7798 49.10

segment-
based

Single-sample 
analysis 0.0602 0.0224 0.8936 0.97

  Double-sample 
analysis 0.0595 0.0076 0.8771 1.21

(4)For σ2 = 0. 32, ρ = 0.6
 

Average 
MCR

Average 
FPR

Average 
TPR

Running time 
(sec/105 iter)

probe-based Single-sample 
analysis 0.6175 0.6927 0.4744 34.46

  Double-sample 
analysis 0.2643 0.2149 0.6753 49.30

segment-
based

Single-sample 
analysis 0.1357 0.0689 0.7827 0.97

  Double-sample 
analysis 0.0399 0.0116 0.9256 1.20

Table 1: Performance of two Bayesian approaches under different parameter 
settings.
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Figure 4: Posterior sample trace plots. Gray dots: posterior samples in 4 × 104iterations; Blue solid line: true value; Red dashed line: loess curve of the trace.A: 
posterior ρ samples obtained by probe-based approach; B: posterior σ2samplesobtained by probe-based approach; C: posterior ρ samples obtained by segment-based 
approach; D: posterior σ2samples obtained by segment-based approach; E:posterior n samples obtained by segment-based approach.
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approach depends highly on the number of segments n. For longer 
sequence of probes with many segments, say, n > 200, we suggest to 
divide the whole sequence into several pieces and analyze each one 
separately. By doing so we could achieve better mixing for relatively 
short sequences and save the total computing time.

Real Data Analysis
Corriel cell lines

We apply the segment-based approach to the Corriel cell lines 
dataset [1]. Genomic alterations in this dataset were previously 
characterized by cytogenetics, as shown in Table 1 on the above 
website, therefore it can be used as a “gold standard” to evaluate array 
CGH data analyzing methods. The data have been normalized to the 
genome-wide median log intensity ratio. As an example, we show the 
estimation result of profile GM05296 chromosome 10 in Figure 7, 
panel A. We see that the segment-based approach detects a trisomy 
region from probe 54 to 94, corresponding to the 10q21–10q24 region 
on chromosome 10, which matches the karyotypes presented in Table 

1. Figure 7, panel B gives another example of profile GM13330 from 
chromosome 1 to chromosome 5, at region 1q32–5q34, which involves 
more than one CNVs. We see that the segment-based approach detects 
two CNVs, one trisomy region from probe 38 to 84, corresponding to 
the 1q25–1qter region on chromosome 1, the other from probe 385 to 
401, corresponding to the 4q35–4qter region on chromosome 4. Both 
match the karyotypes. 

Pancreatic adenocarcinoma data

We also implement the segment-based approach to the Pancreatic 
Adenocarcinoma dataset, which contains data from Aguirre et al. [28] 
and is available in MATLAB Bioinformatics toolbox. This dataset 
includes array CGH profiles of 24 Pancreatic Adenocarcinoma cell 
lines and 13 primary tumor specimens. As an example, we apply the 
segment-based approach to analyze sample 10, chromosome 19. The 
estimation result is shown in Figure 8. We see that the segment-based 
approach detects three CNVs, in which the first one seems more like 
a single-probe amplification with log intensity ratio 2. In panel A, we 
use the usual possible copy number states {−1, 0, 0.58, 1}, so we can 
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Figure 5: Comparison with CBS and HMM using simulated data with low SNR and high correlation. A: simulated data with true mean log intensity ratios; B: estimation 
result by CBS; C: estimation result by Bayesian HMM; D: estimation result by segment-based approach.
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Figure 6: A simulated example of large L and n, and the estimate by segment-based approach. Black circles: observed log intensity ratios x; Blue solid line: true µ; 
Red solid line: estimated µ. 
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Figure 7: Application to Corriel cell lines data. Black circles: observed log intensity ratios (normalized); Red solid lines: estimated mean log intensity ratios. The x axis 
displays the distance from the p telomere. A: profile GM05296 chromosome 10; B: profile GM13330 1q32-5q34, vertical black dashed lines indicate borders between 
chromosomes.
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only see that the first CNV hits log intensity ratio 1. After adjusting the 
possible copy number states to include copy number state 2, we obtain 
a reasonable result, as shown in panel B. 

Discussion
The estimation of the mean log intensity ratios μ involves two 

problems: the location of homogeneous regions and the copy number 
states of these regions. Some methods, such as CBS [4], concentrate 
on detecting the boundaries of the regions (change points). On the 
other hand, other methods such as the HMM methods [11,12] and 
the Bayesian probe-based approach, estimate the intensity ratio of 
each probe first, then group the probes with the same ratios to form 
homogeneous regions. Perhaps a more effective way is to integrate 
the region homogeneity constraint into estimation of the intensity 
ratios, i.e., to solve the two estimation problems simultaneously. The 
Bayesian segment-based approach is proposed for this reason, and is 
shown through simulations to have better estimation accuracy and 
higher computational efficiency. In summary, our Bayesian segment-
based approach and the multivariate normal model have the following 
advantages: 

1.	 Efficiency in computation. From the likelihood expression (1), we 
see that for certain covariance structures, the computation of the 
likelihood does not involve matrix operations (note the special 
form of matrix W) hence the MCMC sampling is fast. In particular, 
the segment-based approach is much faster than the probe-based 
approach although the latter is based on a more restricted prior 
assumption. 

2.	 Flexibility in modeling various covariance structures of the 
data. The current first-order autoregressive covariance structure 
assumes homogeneous correlation and marginal variance. It can 
be easily adjusted to other parametric forms, such as blockwise 
homogeneous correlation (i.e., independence between regions), 
blockwise homogeneous marginal variance or even more general 
structures. For example, we might specify ρ(u) = exp(-αuc) where u 
is the unit (probe order) difference, α and c are tuning parameters. 

3.	 Gain in efficiency when analyzing recurrent CNVs in multiple 
samples. Analysis of recurrent CNVs in multiple independent 
samples is done by replacing the likelihood (1) with a product of 
likelihoods from each sample, while the rest derivations remain 
the same. By borrowing strength from independent samples, this 
model is shown to be more powerful and robust. 

4.	 The proposed method can also be integrated with some other array 
CGH analysis methods to improve performance. For example, the 
output of change point detection, smoothing or clustering methods 
provides rough information about region boundaries and may be 
used as the initial values in our MCMC algorithm. 

We also notice that most methods analyze array CGH data using 
the order of the probes, not using their actual position in the genome. 
When the spatial dependence is determined by the position instead of 
the order of the probes, the covariance structure of the log intensity 
ratio turns out to be totally different so that it is difficult for many 
existing methods, such as the commonly used HMM method, to make 
the corresponding adjustment. Our proposed method may handle this 
issue with only a slight modification to the covariance matrix unit from 
the probe order to the probe position in the genome.

Another important issue in real data analysis is that the mean 
log intensity ratios do not exactly follow the theoretical levels. We 
can modify our segment-based approach to handle arbitrary copy 
number states. One way is to determine the possible states through a 
pre-processing scan or using other change-point detection methods. 
When the total number of theoretical levels is known, an alternative 
way is to treat the unknown theoretical levels as hyper parameters, set 
appropriate prior distributions and then proceed as proposed before. 
The additional hierarchy of hyper parameters also provides estimation 
for the theoretical levels. The alternative adjustment is shown to be 
effective through simulations (results not shown).

Finally, although the segment-based approach is motivated by 
the analysis of array CGH data, it is a general framework that can be 
used to solve many similar problems, especially when the data show 
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Figure 8: Application to Pancreatic Adenocarcinoma data, sample 10, chromosome 19. Black circles: observed log intensity ratios (normalized); Red solid lines: 
estimated mean log intensity ratios. The x axis displays the distance from the p telomere. A: use possible copy number states {-1, 0, 0.58, 1}, B: use possible copy 
number states {-1, 0, 0.58, 1, 2}.
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a “sequential clustering” property, i.e., different regions of a spatial 
sequence can be clustered into several categories based on certain 
rules. Such type of data exist widely in many real problems, especially 
in genetics and bioinformatics area. A good example is the problem 
of haplotype block identification and haplotype phasing. We expect 
that the proposed method will help researchers to analyze such data 
effectively and efficiently as well.
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