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Abstract (600 Word Limit): 

Emerged to provide mechanical support for plasma membranes contacting/interacting with 

neighboring cells and the extracellular matrix. Keratin genes make up the majority of IntFil 

genes. Whereas the first keratin gene arose in a sponge and three genes in arthropods, lungfish 

and amphibian genomes experienced more rapid increases in keratin genes, coinciding with the 

land-sea animal divergence (440 to 410 million years ago). There are 18, 17, and 24 non-keratin 

IntFil genes in the human, mouse, and zebrafish genomes, respectively. 27 of the 28 type I 

"acidic" keratin genes are found on chromosome 1.2, while all 26 type II "basic" keratin genes 

are found on chromosome. On Chr 11 in mice, 27 of the 28 type I keratin genes are grouped, and 

at Chr 12q13.13, all 26 type II "basic" keratin genes clustered. On Chr 11, 27 of the 28 type I 

keratin genes are grouped, whereas all 26 type II keratin genes are concentrated on Chr 15. There 

are 18 type I keratin genes on five chromosomes and three type II keratin genes on two 

chromosomes in zebrafish. Types I and II keratin clusters, which reflect evolutionary blooms of 

keratin genes along a single chromosomal segment, are found in all land animal genomes 

examined, but not in fish genomes; such rapid gene expansions are likely due to sudden 

requirements for many novel paralogous proteins with divergent functions to enhance species 

survival following the sea-to-land transition. Tissue-specific keratin expression across the human 

body was recreated using data from the Genotype-Tissue Expression (GTEx) project. Similarities 

in gene expression patterns were discovered using clustering. By end of the Cambrian explosion 

(~ 500 million years ago), intermediate filament (IntFil) genes had become well established in 

the Animalia Kingdom and began expanding rapidly, encoding novel proteins that were 

necessary for species survival among metazoans. These IntFil genes played dynamic roles in cell 

integrity and structural scaffolding—more specifically, to provide mechanical support for plasma 

membranes where they come into contact with other cells and with the extracellular matrix. The 

development of high-throughput genomic-sequencing technology has substantially aided the 

discovery of new members of the IntFil group. Unfortunately, the identification of these novel 

IntFil group members, particularly the keratin genes, has severely confounded and muddled the 

nomenclature of these genes. 

 

Importance of Research (200 Word Limit): 
 

Keratins were the first group of into fills to have their X-ray diffraction pattern discovered. 

However, from a structural perspective, their molecular functions have been difficult to 

elucidate; this is in part due to the ability of keratins to form both stable heterodimers and 

homodynes in vitro—which led to the assumption that this can occur in the living cell (although 
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this has been difficult to confirm)].A phylogenetic tree of the human IntFil group  reveals that all 

18 IntFil genes of types III, IV, V and VI appear to be evolutionarily older than the keratin gene 

subsets (i.e., IntFil types I & II). It should be noted that the two synemin protein isoforms in the 

tree originate from one gene, and the three lamin isoforms are derived from one gene. Note that 

the IntFil genes of subgroups III, IV, V and VI are scattered among twelve chromosomes (Chr 1, 

2, 3, 5, 8, 10, 12, 15, 17, 19, 20, 22); this is further evidence that these four IntFil subgroups are 

evolutionarily very ancient. 

 

Biography (150-200 Word Limit): 
 

Brian Thompson is a second-year doctoral student in Environmental Health Sciences at Yale 

University where he has gained experience from his teaching fellowship roles in both the 

Introductory Biostatistics and Introductory Toxicology courses. His research interests include 

understanding how cells of the central nervous system respond to both endogenous and 

exogenous stressors. His interest in climate change grew from a belief that climate change is the 

most consequential problem facing the world in the 21st century. Prior to his doctoral studies, 

Brian obtained a BS in Biochemistry from the University of Massachusetts Amherst. Ocular 

development is composed of a carefully orchestrated set of events that are easily perturbed, 

which results in a syndrome of diseases termed MAC (microphthalmia, exophthalmia and 

coloboma). For decades, previous research has largely been focused on elucidating the role of 

transcription factors in directing eye development. However, it is increasingly realized that 

oxidative stress also plays an important role in the eye development process. Despite these 

realizations, much remains to be known about the mechanisms by which oxidative stress 

influences eye development. 
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research, transformation and collaboration in a safe space.  
For more than 25 years, TLI’s leadership team have developed  
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varied pursuits of international, commercial and federal programs. 
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Clinic and Harvard University to top DC metro universities.TLI 
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Uniformed Services University of the Health Sciences (USUHS), and 
the Bridging Advanced Developments for Exceptional 
Rehabilitation (BADER) Consortium which supports the University of 
Delaware, Harvard, and the Mayo Clinic.   
Other clients have included UPMC, University of Washington, Yale 
University, Columbia University, Duke University, Oklahoma 
University, University of Nebraska, Henry M. Jackson Foundation, 

Robert Wood Johnson Foundation, and RAND Corporation. 
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