

19th World Congress on Biofuels and Bioenergy

November 13-14, 2025

Webinar

Hannah Schultz, J Fundam Renewable Energy Appl 2025, Volume 15

Biohydrogen production using hybrid photocatalytic - Fermentative systems

Hannah Schultz
ETH Zurich, Switzerland

Biohydrogen is a highly efficient, carbon-free energy carrier, yet limitations in biological conversion efficiency hinder widespread adoption. This study presents a hybrid biohydrogen production platform integrating photocatalytic water splitting with dark-fermentative pathways. Metal-organic framework (MOF) photocatalysts demonstrated exceptional light absorption and hydrogen evolution rates under simulated solar exposure. When combined with engineered *Clostridium* species optimized for hydrogenase activity, total hydrogen output increased by 76%. Substrate recycling between photocatalytic and microbial stages further enhanced efficiency. Lifecycle modeling suggests that hybrid systems could outperform traditional biohydrogen methods in both cost and energy return. This research establishes a viable model for industrial-scale hydrogen production from renewable resources.

Biography

Hannah Schultz is a distinguished professor of renewable energy systems at ETH Zurich. Her work spans photocatalysis, microbial bioenergy pathways, and hybrid renewable fuel systems. She has led major EU-funded clean hydrogen initiatives and has published more than 100 papers on advanced bioenergy technologies.

Received: 15 July, 2025; **Accepted:** 19 July, 2025; **Published:** 15 December, 2025
