2ND INTERNATIONAL CONFERENCE ON APPLIED MICROBIOLOGY AND BENEFICIAL MICROBES OCTOBER 23-25, 2017 OSAKA, JAPAN

Molecular insights into pore formation and target specificity of mosquito-active toxins from *Bacillus thuringiensis*

Chanan Angsuthanasomba¹, Somsri Sakdee¹, Chompounoot Imtong², Chalermpol Kanchanawarin³ and Gerd Katzenmeier¹ ¹Mahidol University, Thailand ²Prince of Songkla University, Thailand ³Kasetsart University, Thailand

Te have been devoted to discovering a multitude of toxic mechanisms of bacterial insecticidal proteins, i.e. Cry4Aa & Cry4Ba toxins from Bacillus thuringiensis (Bt), which are highly toxic to larvae of Aedes and Anopheles species, vectors of dengue viruses and malaria, respectively. The insecticidal feature of these Cry mosquito-active toxins is generally attributed to their capability to form oligomeric pores, causing lysis of target mid-gut cells. However, molecular description of their oligomerization process and target specificity has not been clearly defined. In this report, we employed two direct rendering techniques, i.e. single-particle negative-stain electron microscopy and high-speed atomic force microscopy, for visualizing 3D structure and trimeric assembly of the membrane-associated Cry4Ba toxin. We clearly showed that a membrane-induced state of toxin monomers is a critical prerequisite for the formation of a potential pre-pore trimer. Moreover, the polarity of the Cry4Ba α4-α5 loop residue-Asn¹⁶⁶ was found to be important for ion permeation and pore-opening. We further demonstrated that single-reversal charge in the β_{10} - β_{11} receptor-binding loops, Cry4Aa-Lys⁵¹⁴ or Cry4Ba-Asp⁴⁵⁴, reflected their different toxicity against target mosquito-larvae. Furthermore, we demonstrated that Cry4Ba utilizes two aromatic loop-residues, Tyr³³² and Phe³⁶⁴ which are respectively located in β_2 - β_3 and β_4 - β_5 loops, comprising the receptor-binding domain, for synergistic interactions with its alternative receptor-Cyt2Aa2 from Bt subsp. darmstadiensis. We further showed that Thr³²⁸ and Thr³⁶⁹ could form H-bonding responsible for holding together these two receptor-binding hairpins (i.e., β_2 - β_3 and β_4 - β_5) in relevant to toxicity synergism with Cyt2Aa2. Altogether, we now feel able to tackle the key steps viz., their insecticidal mechanism, particularly on toxin-receptor interactions and the events following insertion of part of the toxin into membrane phase to form a trans-membrane leakage pore. Comprehensive understandings of the actual underlying toxic mechanism would bolster the future development of a better engineered bio-pesticide for control of such disease-carrying vectors.

chanan.ang@mahidol.ac.th