Evaluation of the airPHX advance oxidation system in controlling healthcare-associated infections on various surfaces

The effectiveness of reactive oxygen species (ROS) generating airPHX equipment for reducing bacterial populations of *Clostridium difficile*, Methicillin-Resistant *Staphylococcus aureus* (mRSA) and *Pseudomonas aeruginosa* on three (3) common contact surfaces; stainless steel (Austenitic 316), plastic (PVC) and linoleum (floor tile) were studied. Antimicrobial-resistant pathogens pose an ongoing and increasing challenge to hospitals because they cause healthcare–associated infections (HAIs) during clinical treatment of patients.

Biography

Rick Falkenberg has completed his PhD from University California San Diego. Senior Principal Scientist at Nestle Nutrition R&D in Fremont Michigan USA. His expertise is diverse with food microbiology, pasteurization/sterilization process validation, the ability to conduct TDT, Temperature Distribution, Heat Penetration testing, electronic controls, record keeping, and process bio-validation for various products including low moisture foods. He has published several papers in reputed journals and has been serving as an editorial board member of repute. He has seven (7) patents, multiple awards, Fellow of the Royal Society of Health (1992), ΦΤΣ - Phi Tau Sigma, The Honour Society of Food Science and Technology (2017).

rick.falkenberg@outlook.com