conferenceseries.com

13th International Conference on

Agriculture & Horticulture

September 10-12, 2018 | Zürich, Switzerland

Short-term soil carbon dioxide emission, organic carbon and nitrogen of soil as affected by N fertilization in an arid wheat field, Northwest of Mexico

Silvia Monica Avilés¹, Roberto Soto¹, Isabel Escobosa¹, Víctor A Cárdenas¹, Cristina Ruíz¹, Eduardo Salcedo² and Jairo Diaz³ ¹Institute of Agricultural Science, Autonomous University of Baja, Mexico ²University of Guadalajara, Mexico ³University of California, USA

Conventional tillage systems in the production of agricultural crops often, use excessive application of nitrogen fertilizer, which is a source of generation of greenhouse gases (N_2O and CO_2). The information regarding the assessment of greenhouse gases emissions in conventional fertilization a system, which is most widely used in the Mexicali Valley, is limited. The aim of this study is to evaluate the CO_2 emission, organic carbon and soil nitrogen related to the application of nitrogen fertilizer in a soil cultivated with wheat under conventional tillage in the Mexicali Valley, Baja California. The experimental plot, with a soil Aquic Haplotorrert was cultivated with wheat (*Triticum durum*), with applications of nitrogen fertilizer, urea, at doses of 0, 200 and 400 kg ha⁻¹. Organic carbon was measured by Walkley & Black method. Soil samples were incubated and CO₂ emanated from the treatments was measured after 4, 22, 46 and 142 hours of incubation. Nitrogen mineralization (NO_3 -) during the crop cycle was obtained from KCl extraction and Kjeldhal method. The tendency was described by a lineal function (y = ax + b), a statistical means trial test was carried out (Tukey a=0.05). Organic carbon values were between 0.87 to 1.02%, not much difference was found at different doses. The emission of CO₂ was 194, 247 and 238 mg/g/h for doses 0, 200 and 400 Kg N ha⁻¹ respectively, with differences (p>0.05) between them. Highest doses of nitrogen applied to the soil does not necessarily correspond to a higher emission of CO₂ or organic carbon, but increase (p<0.05) the nitrogen mineralization, at least under evaluated conditions.

N Doses	CO ₂ omission
Kg ha ⁻¹	mg/g/h
0	194 a
200	247 a
400	238 a

N Doses	NO ₃
Kg ha 1	mg/g/h
0	753 a
200	942 b
400	1125 c

Recent Publications

- 1. Kader M et al. (2010) Soil organic matter fractionation as a tool for predicting nitrogen mineralization in silty arable soils. Soil Use and Management. 26(4):494-507.
- 2. Patiño Zúñiga L et al. (2009) The effect of different tillage and residue management practices on soil characteristics, inorganic N dynamics and emissions of N₂O, CO₂ and CH₄ in the central highlands of Mexico: A laboratory study. Plant Soil. 314(1-2):231–241.

conferenceseries.com

13th International Conference on

Agriculture & Horticulture

September 10-12, 2018 | Zürich, Switzerland

Biography

Silvia Monica Avilés has her expertise in soil fertility, Sustainable Use of Soil and Water Research Group. Her evaluation is based on fertility in the soil on agricultural production systems in arid zones that let to get information to improve the management of fertilizers, soil and water, taking in account climate change and greenhouse gases emissions. She has been working for several years in research, evaluation and teaching in different universities.

monica_aviles@uabc.edu.mx

Notes: