conferenceseries.com

2nd International Conference and Exhibition on

Satellite & Space Missions

July 21-23, 2016 Berlin, Germany

Secchi disk depth: Evaluation of an algorithm based on new visibility theory

Zhongping Lee¹ and Shaoling Shang² ¹University of Massachusetts, USA ²Xiamen University, China

S ecchi disk depth (Z_{SD}), a measurement of the maximum viewable depth of a white or black-and-white disk with a diameter about 30 cm when lowered into water, holds the longest (from at least 1880's) records of water transparency. This Z_{SD} data record is found not only important for the study of climate change, but also useful for seagoers. However, there has been no standard Z_{SD} product from all satellite ocean color missions. This may in part lie in that there was no robust algorithm to estimate Z_{SD} of global oceans from ocean color measurements, although numerous empirical relationships were developed for various locations. In addition, the classical visibility theory suggests that Z_{SD} is proportional to the inverse of (K+c), with K the diffuse attenuation coefficient and c the beam attenuation coefficient. Because c is significantly (2-5 or more) larger than K and that c could not be analytically retrieved from ocean color measurements. A recent study found that this classical interpretation of Z_{SD} is flawed, and a new theoretical relationship is developed for Z_{SD} . With concurrent measurements of Z_{SD} and remote-sensing reflectance (Rrs) of wide range of aquatic environments, the performance of the estimation of Z_{SD} with Rrs as inputs by the classical and the new approaches is evaluated. The excellent results of the new relationship indicate a robust system to produce global Z_{SD} from satellite ocean color measurements.

zhongping.lee@umb.edu

Spatial and temporal features of particle precipitation at low- and mid-latitude zones

Miah Muhammad Adel¹, K Nagata², T Kohno³, H Murakami⁴, A Nakamoto⁴, N Hasebee⁵, J Kikuchi⁶ and T Doke⁶ ¹University of Arkansas at Pine Bluff, USA

²Tamagawa University, Japan ³The Institute of Physical and Chemic

³The Institute of Physical and Chemical Research, Saitama, Japan ⁴Rikkyo University, Japan

⁵Ehime University, Japan

⁶Waseda University, Japan

E XOS-C observed precipitation of protons of energy 0.64-35 MeV and electrons of energy 0.19-3.2 MeV parallel to the geomagnetic equator in the low-latitude region, mid-latitude region, and the auroral region in order of increasing intensities during the time interval (1984-86). The detector efficiency shows that the locally mirroring particles (pitch angle 90 degrees) outnumber those of other pitch angles. In the low-latitude region, the electron peak flux lies in the L- range of 2-2.2, and the proton peak flux between L=1.8 to 2.0. In the mid-latitude region, proton peaks lies between L=2.2 to 2.4. The peak value of the particle population lies between 650 and 700 km. The particle population shows no longitude dependence within 1400 to 3600. There is a shortage of data points in the other longitude range. In certain passes of the satellite, electron counting rates outnumber the proton counting rates and in some other passes the opposite effect occurs. Either altitude variation or a temporal variation or both may play a role for this opposing effect. No local time variation was found.

adelm@uapb.edu