conferenceseries.com

2nd International Conference on

Hepatology

May 09-11, 2016 Chicago, USA

Niclosamide blocks glucagon phosphorylation of serine 552 on β-catenin leading to a reduction in cyclin D1 and c-Myc expression in primary rat hepatocytes via PKA signaling

Md Kamrul Hasan Chowdhury University of New South Wales, Australia

Recently it has been found that glucagon is able to activate the β -catenin signaling pathway leading to increased cyclin D1 and c-Myc expression in liver. Therefore, the main aim of this study is to determine if the effect of glucagon activating β -catenin signaling leading to increased target gene expression is mediated through cAMP activation of protein kinase A. Primary rat hepatocytes were incubated with insulin, glucagon or epinephrine and a range of inhibitors of PI 3-kinase, Wnt, mitochondrial uncoupler (niclosamide) or PKA inhibitors to dissection out the pathway leading to increased serine 552 phosphorylation of β -catenin following glucagon exposure. Western blot and real-time PCR were used. In primary rat liver cells, we found that short exposure of glucagon or epinephrine caused a rapid increase in serine-552 phosphorylation on β -catenin that leads to increased cyclin D1 and c-Myc expression. Both glucose and insulin had no effect on this pathway. A range of PI 3-kinase and Wnt inhibitors were unable to block the effect of glucagon phosphorylating β -catenin. Interestingly, both niclosamide and the PKA inhibitor H89 blocked the glucagon effect on β -catenin signaling leading to a reduction in the target genes expression. We have identified a new pathway via glucagon signaling that leads to increased β -catenin activity that can be reversed with the antihelminthic drug niclosamide which has recently shown promise as a potential treatment of type-2 diabetes (T2D). This novel finding could be useful in liver cancer treatment particularly in the context of T2D with increased β -catenin activity.

Biography

Md Kamrul Hasan Chowdhury has completed his Bachelor of Pharmacy from the University of Development Alternative (UODA), Bangladesh. Following his Bachelor's degree, he has received a scholarship for studying Master of Science (MSc) in Pharmacogenomics at Inje University, College of Medicine, South Korea. After graduating from Inje University, he successfully obtained a competitive PhD Scholarship UIPA (University International Postgraduate Award) from the University of New South Wales Australia, Australia.

md.kamrul.chowdhury@unsw.edu.au

Notes: