

3rd International Summit on **TOXICOLOGY & Applied Pharmacology**

October 20-22, 2014 DoubleTree by Hilton Hotel Chicago-North Shore, USA

A PPAR gamma agonist methyl honokiol induces apoptosis through triggering intrinsic apoptosis pathway and inhibiting PI3K/Akt survival pathway in SiHa human cervical cancer cells

Yong Seok Song¹, Do Young Yoon¹, Seung Yeon Hyun¹, Yesol Bak¹, SunYoung Ham¹, Man Sub Kim¹, Yun Sun Park¹ and Jintae Hong² ¹Konkuk University, Korea

²Chungbuk National University, Korea

4-O-methylhonokiol (MH), a bioactive compound derived from Magnolia officinalis, is known to possess several bioactivities such as anti-tumor or anti angiogenesis effects in prostate, colon and ovarian cancer cells. However, the precise anti-cancer effect of MH in cervical cancer cells has not been studied yet. In this study, we demonstrated that MH induced apoptosis in SiHa cervical cancer cells by enhancing PPAR γ activation followed by inhibiting PI3K/Akt survival pathway and inducing mitochondrial-dependent apoptosis pathway. The tumor suppressors were modulated by MH in SiHa human cervical cancer cells: ppRB were down-regulated while CDK inhibitor p21, p53/pp53, and pRb were enhanced. MH up-regulated PPAR- γ and PTEN expression levels while Akt/Akt phosphorlylation levels were decreased in MH-induced apoptotic process, supporting that MH is a PPAR- γ activator. Additionally, the expression of anti-apoptotic factor Bcl-2 was decreased whereas a well known apoptotic factor Bax was increased, thereby releasing cytochrome c into cytosol in MH-treated cervical cancer cells. Furthermore, MH treatment led to the activation of caspases-3/-9 and proteolytic cleavage of PARP. The expression level of extrinsic death receptor Fas (CD95) was not altered by MH treatment. Taken together, MH, activates PPAR- γ /PTEN expressions, induces apoptosis via suppressing AKT/PI3K survival pathway, cell cycle arrest at sub-G1 phase and mitochondria-emanated intrinsic pathways in SiHa human cervical cancer cells. These findings suggest that MH can be used as a therapeutic agent for human cervical cancer.

Biography

Yong-Seok Song has completed his Bachelor's degree from Konkuk Univerity. Uder the tutelage of Professor Do Young Yoon. He is currently working on the modulating effect of a new isoform of IL-32 theta on adipogenesis and cancer towards a master and PhD's degree.

ydy4218@konkuk.ac.kr