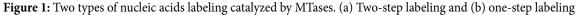

2nd European Organic Chemistry Congress


March 02-03, 2017 Amsterdam, Netherlands

Improved AdoMet analogs serve as nucleic acids labels

Milda Nainyte and Viktoras Masevicius Vilnius University, Lithuania

Biological methylation is a methyl group transfer from *S*-adenosyl-L-methionine (AdoMet) onto N-, C-, O- or S-nucleophiles in DNA, RNA, proteins or small biomolecules. The reaction is catalyzed by enzymes called AdoMet-dependent methyltransferases (MTases). Recently, DNA methyltransferases have been used for the sequence-specific, covalent labeling of biopolymers. To expand the practical utility of this important enzymatic reaction, cofactors with activated sulfonium-bound side-chains have been produced and can serve as surrogate cofactors for a variety of wild-type and mutant DNA and RNA MTases enabling covalent attachment of these chains to their target sites in DNA, RNA or proteins (the approach named methyltransferase-directed Transfer of activated groups, mTAG). Compounds containing hex-2-yn-1-yl moiety has proved to be efficient alkylating agents for labeling of DNA. Two types of MTase catalyzed labeling of biopolymers are known. First is referred as two-step labeling (Fig 1 (a)). In the first step of this type of labeling, biopolymer is alkylated with functionalized AdoMet and in the second step, a reporter group, such as biotin or fluorophores are attached to a functional group, using suitable chemistries of coupling. This approach of labeling is quite difficult and the chemical hitching does not always proceed at the 100%, but in the second step the variety of reporter groups can be selected and that gives the flexibility for this labeling method. In the second type a biopolymer is labeled by one step (Fig. 1 (b)). The AdoMet analog is designed with the reporter group already attached to the functional group. The whole cofactor is used for alkylation of a target nucleotide of a biopolymer. Herein, we present synthetic procedures for the preparation of S-adenosyl-L-methionine analogs containing various functionalities such as "cleavable" bonds, and variety of reporter groups.

Biography

Milda Nainyte has graduated from Vilnius University, obtaining her Master of Science degree in 2015. Currently, she is a PhD student in the group of Professor V Masevičius. Her research interests include organic chemistry, labeling of biopolymers, as well as synthesis and analysis of biologically active compounds.

milda.nainyte@gmail.com

Notes: