conferenceseries.com

Organic Chem Curr Res 2018, Volume:7 DOI: 10.4172/2161-0401-C1-023

4th European

ORGANIC CHEMISTRY CONGRESS

March 01-03, 2018 | London, UK

Synthesis, molecular docking and dynamic simulation studies of new 7-oxycoumarin derivatives as potential antioxidant agents

Nehad A Abdel Latif¹, Rasha Z Batran¹, Salwa F M Mostafa¹, Mohammed A Khed^{2, 3}, Mohamrd I Kobeasy^{4, 5} and Sara A F Al-Shehri⁶

¹National Research Center, Egypt

²Helwan University, Egypt

³King Faisal University, Saudi Arabia

⁴Taif University, Saudi Arabia

⁵Cairo University, Egypt

⁶King Khalid University, Saudi Arabia

Two new series of 4-styryl-7-oxycoumarin derivatives 3a-i and 4-styryl-7-oxycoumarin-8-Mannich bases 6a-r were designed and synthesized. Ten compounds were evaluated *in vivo* for their antioxidant activities against lipid peroxidation, Superoxide dismutase (SOD), glutathione-s-transferase (GST) and catalase (CAT) activities. Compounds 1, 6b, 3c and 6r displayed significant decrease in MDA, SOD and CAT enzyme levels in H2O2 treated rats. Free binding energy was estimated by docking, MM-PBSA and MM-GBSA. Molecular dynamics simulation followed by MM-GBSA calculation was correlated to the antioxidant effect. Compound 1 illustrated the highest MM-GBSA value (-20.38) and the best antioxidant effect.

nehad_km@yahoo.com