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Spectral computational methods

The spectral computational methods for solving a differential or integral equation are much more efficient, both in the 
execution time and in the accuracy, than the conventional finite difference algorithms. The main reason is that the spectral 

methods use information simultaneously from all the mesh points, while the finite difference methods, such as Runge-Kutta 
or Numerov (based on Taylor’s series), can use simultaneously only a restricted number mesh points. Spectral methods, which 
came into vogue since the 1970’s, use expansions into a set of pre determined basis functions, such as Legendre, Lagrange, 
or Chebyshev polynomials, whose mesh points are carefully chosen according to well established mathematical theorems. 
Numerical examples for application to physics will be presented, illustrating the advantages and some draw-backs of the 
spectral methods. They are not difficult to learn or implement.
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