Te-Ge-Se films: Elaboration by thermal co-evaporation, characterization and use for the manufacture of IR integrated optics components, basic elements of CO\textsubscript{2} optical microsensors

M. Vu Thi1, C. Vigreux1, Geoffrey Maulion2, R. Kribich2 and A. Pradel1

1Chv Team, Icgm-Umr 5253, Cc/1503, Um2, Place Eugène Bataillon, 34095 Montpellier, Cedex 05, France
2Teho Team, Ies-Umr 5214, Cc/084, Um2, Place Eugène Bataillon, 34095 Montpellier, Cedex 05, France

Films in a wide range of compositions in the Te-Ge-Se ternary system were prepared by thermal co-evaporation. The evolution of optical and thermal properties versus the composition have been used to determine a particular area of composition which is interesting for manufacturing waveguides being able to operate from 1 to about 17 microns.

Straight and curved RIB waveguides as well as Y-junctions based on these compositions were fabricated by using laser lithography and ion beam etching. Propagation losses of straight RIB waveguides were estimated to be around 1 dB.cm-1 at $\lambda = 1.55$ μm. All the curved RIB waveguides were highlighted to be operational, independently of their curve radius and angle. Finally, the Y-junctions were shown to operate at a satisfying power division.

mai.vu_thi@yahoo.fr