5th International Conference on

Physical and Theoretical Chemistry

October 11-13, 2018 | Edinburgh, Scotland

Chemistry of peroxy radicals in the atmosphere: experimental study on the role of their reaction with OH radicals

Christa Fittschen University of Lille, France

Peroxy radicals, RO₂, are key species in the atmosphere. They are formed from the reaction of OH radicals with hydrocarbon: RH + OH + O₂ \rightarrow RO₂ + H₂O. In polluted environments, RO₂ radicals react predominantly with NO, leading to formation of NO₂ and eventually through photolysis of NO₂ to formation of O₃. At low NO_x concentrations such as in the marine boundary layer or the background troposphere, the lifetime of RO₂ radicals increases and other reaction pathways become competitive. Atmospheric chemistry models have considered until recently only the self- and cross reaction with other RO₂ radicals or with HO₂ radicals as the major fate for RO₂ radicals under low NO_x conditions. Recently, the rate constants for the reaction of peroxy radicals with OH radicals: RO₂ + OH \rightarrow products has been measured for CH₃O₂ and for larger peroxy up to C₄. The reaction is fast and it was shown to become competitive to other sinks. In order to evaluate the impact of this so far neglected sink for peroxy radicals on the composition of remote atmospheres, the reaction products must be known. HO₂ has been identified as major product for the reaction of CH₃O₂ radicals. A recently improved experimental set-up combining laser photolysis with two simultaneous CW-CRDS (continuous wave cavity-ring down spectroscopy) detections in the near IR allowing for a time resolved, absolute quantification of OH and RO₂ radicals has been used for a further investigation of this class of reactions. High-repetition rate LIF is used for determining relative OH profiles. Currently we are investigating the product yields of larger peroxy radicals, and recent results will be presented at the conference.

christa.fittschen@univ-lille1.fr