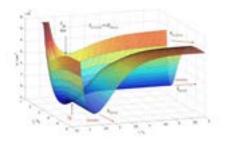
5th International Conference on

Physical and Theoretical Chemistry

October 11-13, 2018 | Edinburgh, Scotland


The O + O₂ exchange reaction: symmetry, isotope effects, and influence of molecular forces

Gregoire Guillon¹, Pascal Honvault¹, Roman Kochanov² and Vladimir Tyuterev² ¹University of Burgundy - Franche-Comté, France ²University of Reims Champagne-Ardenne, France

Statement of the Problem: Molecular oxygen O_2 is the most important molecule in Earth's atmosphere and stratospheric ozone O_3 protects us from 97% of UV radiations. The abundance in ¹⁶O being 99.8%, O_2 and O_3 exclusively formed from it are dominant, thereby giving a reference for any process involving oxygen. A strong enrichment (about 10%) of O_3 in both ¹⁸O and ¹⁷O (the so-called mass-independent fractionation MIF), has first been observed decades ago. The three body recombination $O + O_2 + M \rightarrow O_3 + M$ is believed to be the main process leading to this enrichment and at low pressures, it can be partitioned into two steps: the formation of O_3 in a highly excited rovibrational state, from reaction $O + O_2 \rightarrow O_3^*$, and its subsequent stabilization by collision with an energy absorbing partner M (say N₂ or O₂), $O_3^* + M \rightarrow O_3 + M$. Thus, the efficiency of the exchange reaction $O + O_2 \rightarrow O_3^*$, $\partial_2 + O_3$, involving metastable O_3^* as an intermediate, is one of the key parameters to understand ozone formation. This reaction is very fast and competes with the stabilization process.

Methodology: Using a newly developed, very accurate, potential energy surface (PES), we have realized computationally intensive full-quantum investigation of the dynamics of this process, using a time-independent formalism.

Results: We have, from first principles, computed reactive cross sections and reproduced measured rate constant for the ${}^{18}O + {}^{32}O_2$ process, within experimental error bars. We will sum up resulting cross sections and rate constants for the various ${}^{16}O + {}^{32}O_2$, ${}^{18}O + {}^{32}O_2$, ${}^{17}O + {}^{32}O_2$, ${}^{16}O + {}^{36}O_2$ and ${}^{16}O + {}^{34}O_2$ processes, discussing isotope effects and inclusion of permutation symmetry. We will discuss the strong influence of the PES.

Recent Publications

- 1. Dawes R, Lolur P, Li A, Jiang B, Guo H (2013) Communication: an accurate global potential energy surface for the ground electronic state of ozone. The Journal of Chemical Physics 139:201103-1-4.
- 2. Tyuterev V, Kochanov R, Campargue A, Kassi S, Mondelain D, Barbe A, Starikova E, DeBacker MR, Szalay PG, Tashkun S (2014) Does the 'reef structure' at the ozone transition state towards the dissociation exist? New insight from calculations and ultrasensitive spectroscopy experiments. Physical Review Letters 113:143002-1-4.
- 3. Guillon G, Honvault P (2016) Quantum dynamics of the ${}^{17}\text{O} + {}^{32}\text{O}_2$ collision process. The Journal of Physical Chemistry A 120:8254-8258.
- 4. Guillon G, Honvault P (2017) Quantum dynamics of ¹⁶O in collision with ortho- and para-¹⁷O¹⁷O. Chemical Physics Letters 689:62-67.
- 5. Rao TR, Guillon G, Mahapatra S, Honvault P (2015) Huge quantum symmetry effect in the $O + O_2$ exchange reaction. The Journal of Physical Chemistry Letters 6:633-636.
- 6. Rao TR, Guillon G, Mahapatra S, Honvault P (2015) Quantum dynamics of the ¹⁶O+³⁶O₂ and ¹⁸O+³²O₂ reactions. The Journal of Chemical Physics 142:174311-1-4.

conferenceseries.com

5th International Conference on

Physical and Theoretical Chemistry

October 11-13, 2018 | Edinburgh, Scotland

Biography

Gregoire Guillon has his expertise in quantum scattering, inelastic and reactive, as well as in quantum Monte Carlo simulations. After working for several years in low temperature physics (cold molecules, helium droplets and hydrogen clusters), his latest results involve reactive processes occurring in an atmospheric chemistry context, as they are related to the ozone formation problem in stratosphere. He, together with PH, RC and VT has built this model after years of experience in research in laboratories worldwide.

gregoire.guillon@ubourgogne.fr

Notes: