5th International Conference on

Theoretical and Applied Physics

July 02-03, 2018 | Vienna, Austria

Photocatalyst on atmospheric-pressure plasma electrode

Sang Jun Kim¹, Isheunesu Phiri¹, Jang Myoun Ko¹, Heesoo Jung², Jin Woo Kim³ and Kyoung Yong Eum³ ¹Hanbat National University, South Korea ²Agency for Defense Development (ADD), South Korea ³Hankook Tech Co. LTD, South Korea

The purpose of this study is to improve the physical properties of photocatalytic ceramic coatings on flexible plasma electrodes in order to improve the decomposition efficiency of harmful gases. TiO_2 and ZrO_2 were used as the photocatalytic materials, polyimide (PI) were used as a flexible polymer binder and N-methyl-2-pyrrolidone (NMP) was used as a dispersing agent. As the ratio of polyimide increased, the surface adhesion and crack resistance improved, but the photocatalytic material exposed to the surface decreased. Increasing the NMP ratio as a diluent to adjust the ratio of polyimide increased the exposure of the photocatalyst on the surface but resulted in poor adhesion and surface cracking. The surface uniformity and cracking of the varying ratios of polyimide, NMP, and TiO₂ were analyzed by scanning electron microscopy. High surface uniformity was found to improve the stability and efficiency of the surface of flexible plasma electrodes.

Biography

Sang Jun Kim has completed his Bachelor's Degree from Hanbat National University and is pursuing his Master's Degree from Hanbat National University, Department of Chemical and Biological Engineering.

sangchusarang@gmail.com

Notes: