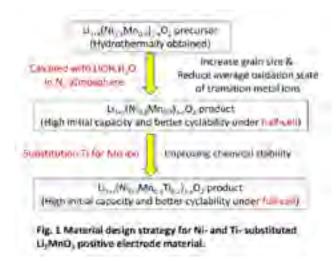
conferenceseries.com


3rd International Conference on

ELECTROCHEMISTRY July 10-11, 2017 Berlin, Germany

Synthesis and characterization of Ni and Ti substituted Li₂MnO₃ positive electrode material for lithiumion battery

Mitsuharu Tabuchi¹ and Nobuhiro Kuriyama¹, Kenji Takamori², Yuichiro Imanari² and Kenji Nakane² ¹National Institute of Advanced Industrial Science and Technology, Japan ²Sumitomo Chemical Co., Ltd., Japan

L i-excess positive electrode material (LiMO₂-Li₂MnO₃ solid solution, $M=Ni_{1/2}Mn_{1/2}$ or $Ni_{1/3}Mn_{1/3}Co_{1/3}$) is a good candidate as its high-capacity (250 mAh/g) and acceptable discharge voltage above 3.5 V for high energy-density lithium-ion battery to EV and PHEV application. Especially, LiNi_{1/2}Mn_{1/2}O₂-Li₂MnO₃ solid solution (Li_{1+x}(NiyMn_{1-y})_{1-x}O₂, 0<x<1/3, 0<y<0.5) is a most attractive as "Co-free" positive electrode material. Synthesis of this material is quite difficult, because homogeneous transition metal distributed precursor can be hardly obtained. AIST has a solution using "co-precipitation hydrothermal calcination method", which was found during the preparation of a new 3 V-class positive electrode material, LiFeO₂-Li₂MnO₃ solid solution. In this work, the synthetic method applies to LiNi_{1/2}Mn_{1/2}O₂-Li₂MnO₃ system. As shown in Fig. 1, the homogeneous precursor can be prepared by low-temperature co-precipitation Ni-Mn hydroxide and hydrothermal treatment with an oxidizer, KClO₃ and Li-source, LiOH.H₂O at 220°C. The precursor calcined with LiOH.H₂O at 850°C under N2 atmosphere to obtain better initial electrochemical performance. To improve cycle performance under full-cell configuration, Ti ion substituted for Mn ion by using 30% Ti(SO₄)₂ ag. solution. Although further effort to establish more facile synthetic method must be needed, the Ni- and Ti- substituted Li₂MnO₃ is an attractive candidate as high-capacity "Co-free" positive electrode material. We develop Li-excess LiNiO2 as high-capacity and better cyclability using thermal decomposition of Li₂NiO₃. AIST found a new 3.5 V-class Fe- and Ni substituted Li₂MnO₃ positive electrode material with NEC and Tanaka Chemical Co. These materials are also "Co-free" ones.

Biography

Mitsuharu Tabuchi is an Inorganic Synthetic Chemist using wet-chemical process for oxide-based positive electrode material of lithium-ion battery. He has extensive experience in the synthetic construction to get homogeneous $LiFeO_2Li_2MnO_3$ solid solution. The constructed synthetic route is also effective for preparing $LiNi_{1/2}On_{1/2}O_2Li_2MnO_3$. He also has characterization experience using 57Fe Mössbauer Spectroscopy and X-ray Rietveld analysis to know the charge compensation mechanism for LiFeO_2Li_MnO_3 system.

m-tabuchi@aist.go.jp