International Conference on

Plant Physiology & Pathology

June 09-10, 2016 Dallas, USA

Changes in the photosynthetic efficiency of sugarcane (Saccharum sp.) when fumigated with CO₂ and O₃

Jacques M Berner North-West University, South Africa

Global CO₂ concentrations have been rising during the past few decades and it is expected that these levels will reach 550 ppm by next century. Together with rise in global CO₂ levels is the increase of surface O₃ due to increase in anthropogenic sources. Surface O₃ is regarded as a very serious air pollutant, causing damage to all forms of life. Crops are especially vulnerable to O₃ stress and significant loss to yields have been reported. In this study, we investigated the effect of elevated CO₂, O₃ and a combination of elevated CO2 and O3 on the light dependent photosynthetic reactions of sugarcane. Two sugarcane varieties, N31 and NCo376 were exposed to 750 ppm CO₂, 80 ppb O₃ and a combination of 750 ppm CO₂ and 80 ppb O₃ in opentop chambers. Chlorophyll a fluorescence analysis was used to investigate the effects on the light dependent photosynthetic reactions. Elevated CO₂, O₃ and the combination treatment, all effected the photosynthetic efficiency, but the two varieties responded differently to these conditions. Analysis of the OJIP kinetics indicated that elevated CO₂ resulted in an early decline in the ability of the plant to create a charge separation in the photosynthetic reactions of N31 reduced much later. The effect of O₃ was less dramatic, but the results did indicate that N31 had a higher tolerance level to O₃ compared to NCo376. A combination of 80 ppb O₃ and 750 ppb CO₂ does indicate that elevated levels of CO₂ can ameliorate the negative impacts of O₃ on the photosynthetic efficiency.

Biography

Jacques M Berner obtained his PhD degree in 2006 at the University of the Free State, Bloemfontein, South Africa. He worked for several years in the private sector, where he developed nutrient foliar applications and the incorporation of plant growth regulators into these products. At the end of 2007, he was appointed as a Lecturer in Plant Physiology at the North-West University, Potchefstroom, South Africa and was promoted to Senior Lecturer in 2015. He specializes in the use of chlorophyll a fluorescence as a tool to evaluate plant health. His current research activities involve the quantification of the effects of climate change and air pollution on crops.

Jacques.Berner@nwu.ac.za

Notes: