

Nanotechnology Congress & Expo

August 11-13, 2015 Frankfurt, Germany

Synthesis and reactivity of $Au/g-C_3N_4/TiO_2$ nanocomposites for water-splitting and H_2 production under solar light illumination

Valérie Keller University of Strasbourg, France

N owadays, the major challenge is to find new environmentally friendly ways to produce energy that may cover the global consumption. The direct conversion of solar energy though an energy carrier (fuel), storable and usable upon request, appears as an interesting alternative. Photocatalysis is an innovative and promising way to produce pure hydrogen from renewable energy sources. Indeed, the water dissociation (water-splitting) highlighted by Fujishima and Honda in a photoelectrocatalytic cell opened a promising way to produce hydrogen from light energy. In our study, we will focus on a photocatalytic TiO₂-based system associated with graphitic carbon nitride (g-C₃N₄). With a band gap of 2.7 eV, g-C₃N₄ allows the valorization of an important part of the visible light spectra in the context of water splitting. TiO₂ powder is obtained via a "sol-gel" process and g-C₃N₄ was obtained via a thermal polycondensation reaction of specific nitrogen-containing precursors. g-C₃N₄/TiO₂ nanocomposites were obtained either (i) by introducing g-C₃N₄ (as synthesized) during the sol-gel synthesis of TiO₂ or (ii) by introducing TiO₂ (as synthetized) during the g-C₃N₄ synthesis. Gold nanoparticles were synthesized - directly onto the TiO₂, the g-C₃N₄ and the g-C₃N₄/TiO₂ support – by chemical reduction of the HAuCl₄ precursor in an excess of NaBH₄. The synthesis of new nanostructured composites allowed us to achieve better hydrogen production yield than the reference Au/TiO₂ and Au/g-C₃N₄ samples. Future goals are to find the optimal amount of Au on the Au/g-C₃N₄/TiO₂ composites but also the optimal amount of g-C₃N₄.

Biography

Valérie Keller is a Senior Scientist at ICPEES (Institute of Chemistry and Processes for Energy, Environment and Health) in Strasbourg. She received her PhD degree in Chemistry and Catalysis from the University Louis Pasteur of Strasbourg in 1993. In 1996 she returned to Strasbourg and was appointed as Researcher in CNRS, where she is now responsible of the Team "Photocatalysis and Photoconversion". In 2012 she was promoted as Director of Research. Her main research activities concern photocatalysis for environmental, energy and health applications, and the synthesis and characterization of nanomaterials for photoconversion purposes. She is the author of over 95 publications in peer-reviewed journals and more than 50 oral communications in international conferences and symposium. She is also the author of 15 patents.

vkeller@unistra.fr

Notes: